1,237 research outputs found

    Ferromagnet-superconductor proximity effect: The clean limit

    Full text link
    We study theoretically the influence of ferromagnetic metals on a superconducting film in the clean limit. Using a self-consistent solution of the Bogoliubov--de Gennes equation for a ferromagnet-superconductor-ferromagnet double junction we calculate the pair potential and conductance spectra as a function of the superconducting layer thickness dd for different strengths of ferromagnets and interface transparencies. We find that the pair potential and the critical temperature are weakly perturbed by the exchange interaction and do not drop to zero for any finite dd. On the other hand, for thin superconducting films charge transport is spin polarized and exhibits a significant dependence on the ferromagnetic strength and magnetization alignment.Comment: 5 pages, 4 figure

    Josephson coupling through ferromagnetic heterojunctions with noncollinear magnetizations

    Full text link
    We study the Josephson effect in clean heterojunctions that consist of superconductors connected through two metallic ferromagnets with insulating interfaces. We solve the scattering problem based on the Bogoliubov--de Gennes equation for any relative orientation of in-plane magnetizations, arbitrary transparency of interfaces, and mismatch of Fermi wave vectors. Both spin singlet and triplet superconducting correlations are taken into account, and the Josephson current is calculated as a function of the ferromagnetic layers thicknesses and of the angle α\alpha between their magnetizations. We find that the critical Josephson current IcI_c is a monotonic function of α\alpha when the junction is far enough from 0π0-\pi transitions. This holds when ferromagnets are relatively weak. For stronger ferromagnets, variation of α\alpha induces switching between 0 and π\pi states and Ic(α)I_c(\alpha) is non-monotonic function, displaying characteristic dips at the transitions. However, the non-monotonicity is the effect of a weaker influence of the exchange potential in the case of non-parallel magnetizations. No substantial impact of spin-triplet superconducting correlations on the Josephson current has been found in the clean limit. Experimental control of the critical current and 0π0-\pi transitions by varying the angle between magnetizations is suggested.Comment: 7 pages, 8 figure

    Photoemission Evidence for a Remnant Fermi Surface and d-Wave-Like Dispersion in Insulating Ca2CuO2Cl2

    Full text link
    An angle resolved photoemission study on Ca2CuO2Cl2, a parent compound of high Tc superconductors is reported. Analysis of the electron occupation probability, n(k) from the spectra shows a steep drop in spectral intensity across a contour that is close to the Fermi surface predicted by the band calculation. This analysis reveals a Fermi surface remnant even though Ca2CuO2Cl2 is a Mott insulator. The lowest energy peak exhibits a dispersion with approximately the |cos(kxa)-cos(kya)| form along this remnant Fermi surface. Together with the data from Dy doped Bi2Sr2CaCu2O(8 + delta) these results suggest that this d-wave like dispersion of the insulator is the underlying reason for the pseudo gap in the underdoped regime.Comment: 9 pages, including 7 figures. Published in Science, one figure correcte

    Scale-invariant magnetoresistance in a cuprate superconductor

    Full text link
    The anomalous metallic state in high-temperature superconducting cuprates is masked by the onset of superconductivity near a quantum critical point. Use of high magnetic fields to suppress superconductivity has enabled a detailed study of the ground state in these systems. Yet, the direct effect of strong magnetic fields on the metallic behavior at low temperatures is poorly understood, especially near critical doping, x=0.19x=0.19. Here we report a high-field magnetoresistance study of thin films of \LSCO cuprates in close vicinity to critical doping, 0.161x0.1900.161\leq x\leq0.190. We find that the metallic state exposed by suppressing superconductivity is characterized by a magnetoresistance that is linear in magnetic field up to the highest measured fields of 8080T. The slope of the linear-in-field resistivity is temperature-independent at very high fields. It mirrors the magnitude and doping evolution of the linear-in-temperature resistivity that has been ascribed to Planckian dissipation near a quantum critical point. This establishes true scale-invariant conductivity as the signature of the strange metal state in the high-temperature superconducting cuprates.Comment: 10 pages, 3 figure

    Non-Fermi liquid behavior of SrRuO_3 -- evidence from infrared conductivity

    Full text link
    The reflectivity of the itinerant ferromagnet SrRuO_3 has been measured between 50 and 25,000 cm-1 at temperatures ranging from 40 to 300 K, and used to obtain conductivity, scattering rate, and effective mass as a function of frequency and temperature. We find that at low temperatures the conductivity falls unusually slowly as a function of frequency (proportional to \omega^{-1/2}), and at high temperatures it even appears to increase as a function of frequency in the far-infrared limit. The data suggest that the charge dynamics of SrRuO_3 are substantially different from those of Fermi-liquid metals.Comment: 4 pages, 3 postscript figure

    Anomalous superconducting state gap size versus Tc behavior in underdoped Bi_2Sr_2Ca_1-xDy_xCu_2O_8+d

    Full text link
    We report angle-resolved photoemission spectroscopy measurements of the excitation gap in underdoped superconducting thin films of Bi_2Sr_2Ca_{1-x}Dy_xCu_2O_{8+d}. As Tc is reduced by a factor of 2 by underdoping, the superconducting state gap \Delta does not fall proportionally, but instead stays constant or increases slightly, in violation of the BCS mean-field theory result. The different doping dependences of \Delta and kT_c indicate that they represent different energy scales. The measurements also show that \Delta is highly anisotropic and consistent with a d_{x^2-y^2} order parameter, as in previous studies of samples with higher dopings. However, in these underdoped samples, the anisotropic gap persists well above T_c. The existence of a normal state gap is related to the failure of \Delta to scale with T_c in theoretical models that predict pairing without phase coherence above T_c.Comment: 10 pages, 4 postscript figures, revtex forma

    The optical response of Ba_{1-x}K_xBiO_3: Evidence for an unusual coupling mechanism of superconductivity?

    Full text link
    We have analysed optical reflectivity data for Ba_{1-x}K_xBiO_3 in the far-infrared region using Migdal-Eliashberg theory and found it inconsistent with standard electron-phonon coupling: Whereas the superconducting state data could be explained using moderate coupling, \lambda=0.7, the normal state properties indicate \lambda \le 0.2. We have found that such behaviour could be understood using a simple model consisting of weak standard electron-phonon coupling plus weak coupling to an unspecified high energy excitation near 0.4 eV. This model is found to be in general agreement with the reflectivity data, except for the predicted superconducting gap size. The additional high energy excitation suggests that the dominant coupling mechanism in Ba_{1-x}K_xBiO_3 is not standard electron-phonon.Comment: 5 pages REVTex, 5 figures, 32 refs, accepted for publication in Phys. Rev.

    ECFA Detector R&D Panel, Review Report

    Full text link
    Two special calorimeters are foreseen for the instrumentation of the very forward region of an ILC or CLIC detector; a luminometer (LumiCal) designed to measure the rate of low angle Bhabha scattering events with a precision better than 103^{-3} at the ILC and 102^{-2} at CLIC, and a low polar-angle calorimeter (BeamCal). The latter will be hit by a large amount of beamstrahlung remnants. The intensity and the spatial shape of these depositions will provide a fast luminosity estimate, as well as determination of beam parameters. The sensors of this calorimeter must be radiation-hard. Both devices will improve the e.m. hermeticity of the detector in the search for new particles. Finely segmented and very compact electromagnetic calorimeters will match these requirements. Due to the high occupancy, fast front-end electronics will be needed. Monte Carlo studies were performed to investigate the impact of beam-beam interactions and physics background processes on the luminosity measurement, and of beamstrahlung on the performance of BeamCal, as well as to optimise the design of both calorimeters. Dedicated sensors, front-end and ADC ASICs have been designed for the ILC and prototypes are available. Prototypes of sensor planes fully assembled with readout electronics have been studied in electron beams.Comment: 61 pages, 51 figure

    Low-Frequency Crossover of the Fractional Power-Law Conductivity in SrRuO

    Full text link
    We combine the results of terahertz time-domain spectroscopy with far-infrared transmission and reflectivity to obtain the conductivity of SrRuO{sub 3} over an unprecedented continuous range in frequency, allowing us to characterize the approach to zero frequency as a function of temperature. We show that the conductivity follows a simple phenomenological form, with an analytic structure fundamentally different from that predicted by the standard theory of metals

    Knowledge, Practice, and Attitudes of Physicians in Low- and Middle-Income Countries on Fertility and Pregnancy-Related Issues in Young Women With Breast Cancer

    Get PDF
    PURPOSE: Fertility and pregnancy-related issues are highly relevant for young ( 64 40 years) patients with breast cancer. Limited evidence exists on knowledge, practice, and attitudes of physicians from low- and middle-income countries (LMICs) regarding these issues. METHODS: A 19-item questionnaire adapted from an international survey exploring issues about fertility preservation and pregnancy after breast cancer was sent by e-mail between November 2019 and January 2020 to physicians from LMICs involved in breast cancer care. Descriptive analyses were performed. RESULTS: A total of 288 physicians from Asia, Africa, America, and Europe completed the survey. Median age was 38 years. Responders were mainly medical oncologists (44.4%) working in an academic setting (46.9%). Among responders, 40.2% and 53.8% reported having never consulted the available international guidelines on fertility preservation and pregnancy after breast cancer, respectively. 25.0%, 19.1%, and 24.3% of responders answered to be not at all knowledgeable about embryo, oocyte, or ovarian tissue cryopreservation, respectively; 29.2%, 23.6%, and 31.3% declared that embryo, oocyte, and ovarian tissue cryopreservation were not available in their countries, respectively. 57.6% of responders disagreed or were neutral on the statement that controlled ovarian stimulation can be considered safe in patients with breast cancer. 49.7% and 58.6% of responders agreed or were neutral on the statement that pregnancy in breast cancer survivors may increase the risk of recurrence overall or only in those with hormone receptor-positive disease, respectively. CONCLUSION: This survey showed suboptimal knowledge, practice, and attitudes of physicians from LMICs on fertility preservation and pregnancy after treatment completion in young women with breast cancer. Increasing awareness and education on these aspects are needed to improve adherence to available guidelines and to promote patients' oncofertility counseling
    corecore