166 research outputs found

    Attack-Resilient Supervisory Control of Discrete-Event Systems

    Full text link
    In this work, we study the problem of supervisory control of discrete-event systems (DES) in the presence of attacks that tamper with inputs and outputs of the plant. We consider a very general system setup as we focus on both deterministic and nondeterministic plants that we model as finite state transducers (FSTs); this also covers the conventional approach to modeling DES as deterministic finite automata. Furthermore, we cover a wide class of attacks that can nondeterministically add, remove, or rewrite a sensing and/or actuation word to any word from predefined regular languages, and show how such attacks can be modeled by nondeterministic FSTs; we also present how the use of FSTs facilitates modeling realistic (and very complex) attacks, as well as provides the foundation for design of attack-resilient supervisory controllers. Specifically, we first consider the supervisory control problem for deterministic plants with attacks (i) only on their sensors, (ii) only on their actuators, and (iii) both on their sensors and actuators. For each case, we develop new conditions for controllability in the presence of attacks, as well as synthesizing algorithms to obtain FST-based description of such attack-resilient supervisors. A derived resilient controller provides a set of all safe control words that can keep the plant work desirably even in the presence of corrupted observation and/or if the control words are subjected to actuation attacks. Then, we extend the controllability theorems and the supervisor synthesizing algorithms to nondeterministic plants that satisfy a nonblocking condition. Finally, we illustrate applicability of our methodology on several examples and numerical case-studies

    Correlative Information Maximization: A Biologically Plausible Approach to Supervised Deep Neural Networks without Weight Symmetry

    Get PDF
    The backpropagation algorithm has experienced remarkable success in training large-scale artificial neural networks; however, its biological plausibility has been strongly criticized, and it remains an open question whether the brain employs supervised learning mechanisms akin to it. Here, we propose correlative information maximization between layer activations as an alternative normative approach to describe the signal propagation in biological neural networks in both forward and backward directions. This new framework addresses many concerns about the biological-plausibility of conventional artificial neural networks and the backpropagation algorithm. The coordinate descent-based optimization of the corresponding objective, combined with the mean square error loss function for fitting labeled supervision data, gives rise to a neural network structure that emulates a more biologically realistic network of multi-compartment pyramidal neurons with dendritic processing and lateral inhibitory neurons. Furthermore, our approach provides a natural resolution to the weight symmetry problem between forward and backward signal propagation paths, a significant critique against the plausibility of the conventional backpropagation algorithm. This is achieved by leveraging two alternative, yet equivalent forms of the correlative mutual information objective. These alternatives intrinsically lead to forward and backward prediction networks without weight symmetry issues, providing a compelling solution to this long-standing challenge

    Biologically-Plausible Determinant Maximization Neural Networks for Blind Separation of Correlated Sources

    Full text link
    Extraction of latent sources of complex stimuli is critical for making sense of the world. While the brain solves this blind source separation (BSS) problem continuously, its algorithms remain unknown. Previous work on biologically-plausible BSS algorithms assumed that observed signals are linear mixtures of statistically independent or uncorrelated sources, limiting the domain of applicability of these algorithms. To overcome this limitation, we propose novel biologically-plausible neural networks for the blind separation of potentially dependent/correlated sources. Differing from previous work, we assume some general geometric, not statistical, conditions on the source vectors allowing separation of potentially dependent/correlated sources. Concretely, we assume that the source vectors are sufficiently scattered in their domains which can be described by certain polytopes. Then, we consider recovery of these sources by the Det-Max criterion, which maximizes the determinant of the output correlation matrix to enforce a similar spread for the source estimates. Starting from this normative principle, and using a weighted similarity matching approach that enables arbitrary linear transformations adaptable by local learning rules, we derive two-layer biologically-plausible neural network algorithms that can separate mixtures into sources coming from a variety of source domains. We demonstrate that our algorithms outperform other biologically-plausible BSS algorithms on correlated source separation problems.Comment: NeurIPS 2022, 37 page
    • …
    corecore