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Abstract

The backpropagation algorithm has experienced remarkable success in training
large-scale artificial neural networks; however, its biological plausibility has been
strongly criticized, and it remains an open question whether the brain employs
supervised learning mechanisms akin to it. Here, we propose correlative informa-
tion maximization between layer activations as an alternative normative approach
to describe the signal propagation in biological neural networks in both forward
and backward directions. This new framework addresses many concerns about the
biological-plausibility of conventional artificial neural networks and the backpropa-
gation algorithm. The coordinate descent-based optimization of the corresponding
objective, combined with the mean square error loss function for fitting labeled
supervision data, gives rise to a neural network structure that emulates a more bio-
logically realistic network of multi-compartment pyramidal neurons with dendritic
processing and lateral inhibitory neurons. Furthermore, our approach provides a
natural resolution to the weight symmetry problem between forward and backward
signal propagation paths, a significant critique against the plausibility of the conven-
tional backpropagation algorithm. This is achieved by leveraging two alternative,
yet equivalent forms of the correlative mutual information objective. These alterna-
tives intrinsically lead to forward and backward prediction networks without weight
symmetry issues, providing a compelling solution to this long-standing challenge.

1 Introduction

How biological neural networks learn in a supervised manner has long been an open problem.
The backpropagation algorithm [1], with its remarkable success in training large-scale artificial
neural networks and intuitive structure, has inspired proposals for how biologically plausible neural
networks can perform the necessary efficient credit-assignment for supervised learning in deep neural
architectures [2]. Nonetheless, certain aspects of the backpropagation algorithm, combined with
the oversimplified nature of artificial neurons, have been viewed as impediments to proposals rooted
in this inspiration [3].

One of the primary critiques regarding the biological plausibility of the backpropagation algorithm
is the existence of a parallel backward path for backpropagating error from the output towards the
input, which uses the same synaptic weights as the forward path [1, 2, 4]. Although such weight
transport, or weight symmetry, is deemed highly unlikely based on experimental evidence [3, 4],
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some biologically plausible frameworks still exhibit this feature, which is justified by the symmetric
structure of the Hebbian updates employed in these frameworks [2, 5, 6].

The concerns about the simplicity of artificial neurons have been addressed by models which
incorporate multi-compartment neuron models into networked architectures and ascribe important
functions to dendritic processing in credit assignment [7, 8, 9, 10]. This new perspective has enabled
the development of neural networks with improved biological plausibility.

In this article, we propose the use of correlative information maximization (CorInfoMax) among
consecutive layers of a neural network as a new supervised objective for biologically plausible
models, which offers

• a principled solution to the weight symmetry problem: our proposed information theoretic crite-
rion aims to maximize the linear dependence between the signals in two neighboring layers,
naturally leading to the use of linear or affine transformations in between them. A key property of
this approach is that employing two alternative expressions for the correlative mutual information
(CMI) results in potentially asymmetric forward and backward prediction networks, offering a
natural solution to the weight transport problem. Consequently, predictive coding in both directions
emerges as the inherent solution to the correlative information maximization principle, fostering sig-
nal transmission in both forward and top-down directions through asymmetrical connections. While
the CorInfoMax principle enhances information flow in both directions, the introduction of set mem-
bership constraints on the layer activations, such as non-negativity, through activation nonlinearities
and lateral inhibitions, encourages compression of information and sparse representations [11].

• a normative approach for deriving networks with multi-compartment neurons: the gradient-based
optimization of the CorInfoMax objective naturally leads to network models that employ multi-
compartment pyramidal neuron models accompanied by interneurons as illustrated in Figure 1.

As derived and explained in detail in Section 2, the resulting networks incorporate lateral connections
and auto-synapses (autapses) to increase the entropy of a layer, promoting utilization of all
dimensions within the representation space of that layer. Meanwhile, asymmetric feedforward and
feedback connections act as forward and backward predictors of layer activation signals, respectively,
to reduce the conditional entropies between layers, targeting the elimination of redundancy.

Figure 1: A segment of a correlative information maximization based neural network. Each layer
consists of three-compartment pyramidal neurons with outputs r(k) and membrane voltages (u(k)-
soma, v(k)

B -basal dendrites, v(k)
A -distal apical dendrites) and interneurons with outputs i(k). The CMI

expression
→

I(ϵk)(r(k), r(k+1)) (
←

I(ϵk)(r(k), r(k+1))) defines forward (backward) prediction synapses
W

(k)
ff (W(k)

fb ), for minimizing H(ϵk)(r(k+1)|Lr(k)) (H(ϵk)(r(k)|Lr(k+1))) and the lateral connections
O(k+1) (O(k)) and autapses D(k+1) (D(k)) connected to distal apical dendrites at the k + 1-th (k-th)
layer, for maximizing H(ϵk)(r(k+1)) (H(ϵk)(r(k))).
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1.1 Related work

1.1.1 Multi-compartmental neuron model based biologically plausible approaches

Experimentally grounded studies, such as [7, 12], have been influential for considering a role
for dendritic-processing in multi-compartmental neurons for learning and credit assignment [13].
Subsequent research has explored biologically plausible models with supervised learning functionality,
such as the two-compartment neuron model by Urbanczik and Senn [8] and the three-compartment
pyramidal neuron model by Sacramento et al. [9]. Both models integrate non-Hebbian learning and
spike-time dependent plasticity, while the latter includes SST interneurons [14]. Similar frameworks
have been proposed by [15] and [10], with the latter introducing a normative framework based on
multi-compartmental neuron structure, top-down feedback, lateral and feedforward connections,
and Hebbian and non-Hebbian learning rules, emerging from the optimization of a prediction error
objective with a whitening constraint on co-layer neurons.

In a similar vein to [10], we propose an alternative normative framework based on information
maximization principle. In this framework, the three-compartment structure and associated forward,
top-down and lateral synaptic connections stem from the maximization of CMI between adjacent
layers, without the imposition of any whitening constraint.

1.1.2 Weight symmetry problem

A central concern regarding the biological plausibility of the backpropagation algorithm pertains
to the weight symmetry issue: synaptic weights in the feedback path for error backpropagation are
transposes of those used in the forward inference path [2, 3, 16]. The requirement of tied weights in
backpropagation is questionable for physically distinct feedforward and feedback paths in biological
systems, leading many researchers to focus on addressing the weight symmetry issue.

Various strategies have been devised to address the weight symmetry issue. For example, the feedback
alignment approach, which fixes randomly initialized feedback weights and adapts feedforward
weights, was offered as a plausible solution [17]. Later Akrout et.al. [18] proposed its extension
by updating feedback weights towards to the transpose of the feedforward weights. Along the similar
lines, Amit introduced antisymmetry through separate random initializations [19]. Liao et al. [20]
showed that the sign of the feedback weights (rather than their magnitude) affects the learning
performance, and proposed the sign-symmetry algorithm.

Intriguingly, this symmetric weight structure is also observed in biologically plausible frameworks
such as predictive coding (PC) [21, 22, 23], equilibrium propagation (EP) [24, 25, 26], and similarity
matching [27]. This phenomenon can be rationalized by the transpose symmetry of the Hebbian
update with respect to inputs and outputs. The EP framework in [25] unties forward and backward
connections inspired by [28, 29], and only yields small performance degradation. A more recent
approach by Golkar et al. [10] addresses this challenge by integrating two alternative forward
prediction error loss function terms associated with the same network layer and leveraging presumed
whitening constraints to eliminate shared feedback coefficients.

In existing predictive coding-based schemes such as [21, 22, 23], the loss function contains only for-
ward prediction error terms. The feedback connection with symmetric weights, which backpropagates
forward prediction error, emerges due to the gradient-based optimization of the PC loss. In contrast,
our framework’s crucial contribution is the adoption of two alternative expressions for the correlative
mutual information between consecutive network layers as the central normative approach. Utilizing
these two alternatives naturally leads to both forward and backward prediction paths with asymmetric
weights, promoting information flow in both feedforward and top-down directions. Unlike the work
of [10], our method circumvents the need for layer whitening constraints and additional forward
prediction terms to achieve asymmetric weights.

1.1.3 Correlative information maximization

Information maximization has been proposed as a governing or guiding principle in several machine
learning and neuroscience frameworks for different tasks: (i) The propagation of information within
a self-organized network as pioneered by Linsker [30]. (ii) Extracting hidden features or factors
associated with observations by maximizing information between the input and its internal represen-
tation such as independent component analysis (ICA-InfoMax) approach by [31]. In the neuroscience
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domain, the motivation has been to provide normative explanations to the behaviour of cortical
activities evidenced by experimental work, such as orientation and visual stimuli length selectivity
of primary visual cortex neurons [32, 33]. The same idea has been recently extended in the machine
learning field by the Deep Infomax approach where the goal is to transfer maximum information
from the input of a deep network to its final layer, while satisfying prior distribution constraints
on the output representations [34]. (iii) Matching representations corresponding to two alternative
augmentations or modalities of the same input in the context of self-supervised learning [35].

Correlative mutual information maximization has been recently proposed as an alternative for Shannon
Mutual Information (SMI), due to its desirable properties [36]: (i) maximization of CMI is equivalent
to maximizing linear dependence, which may be more relevant than establishing arbitrary nonlinear
dependence in certain applications [37], (ii) it is based only on the second order statistics, making it
relatively easier to optimize. We additionally note that criteria based on correlation are intrinsically
linked to local learning rules, leading to biologically plausible implementations, [38, 39]. Erdogan
[36] proposed the use of CorInfoMax for solving blind source separation (BSS) problem to retrieve
potentially correlated components from their mixtures. Ozsoy et al. [37] proposed maximizing the
CMI between the representations of two different augmentations of the same input as a self-supervised
learning approach. More recently, Bozkurt et al. [11] introduced an unsupervised framework to
generate biologically plausible neural networks for the BSS problem with infinitely many domain
selections using the CMI objective.

In this article, we suggest employing the CorInfoMax principle for biologically plausible supervised
learning. The key difference compared to the unsupervised framework presented in [11] is the
utilization of two alternative forms of mutual information. This leads to a bidirectional information
flow that enables error backpropagation without encountering the weight symmetry issue.

2 Deep correlative information maximization

2.1 Network data model

We assume a dataset with L input data points x[t] ∈ Rm, t = 1, . . . , L, and let yT [t] ∈ Rn be the
corresponding labels. We consider a network with P − 1 hidden layers whose activities are denoted
by r(k) ∈ RNk , k = 1, . . . , P − 1. For notational simplicity, we also denote input and output of the
network by r(0) and r(P ), i.e., r(0)[t] = x[t] and r(P )[t] = ŷ[t]. We consider polytopic constraints
for the hidden and output layer activities, i.e., r(k) ∈ P(k), where P(k) is the presumed polytopic
domain for the k-th layer [11, 40]. We note that the polytopic assumptions are plausible as the
activations of neurons in practice are bounded. In particular, we will make the specific assumption that
P(k) = B∞,+ = {r : 0 ≼ r ≼ 1}, i.e., (normalized) activations lie in a nonnegative unit-hypercube.
Such nonnegativity constraints have been connected to disentangling behavior [41, 42, 43], however,
we consider extensions in the form of alternative polytopic sets corresponding to different feature
priors [11] (see Appendix C). More broadly, the corresponding label yT can be, one-hot encoded label
vectors for a classification problem, or discrete or continuous valued vectors for a regression problem.

2.2 Correlative information maximization based signal propagation

Our proposed CorInfoMax framework represents a principled approach where both the structure of the
network and its internal dynamics as well as the learning rules governing adaptation of its parameters
are not predetermined. Instead, these elements emerge naturally from an explicit optimization process.
As the optimization objective, we propose the maximization of correlative mutual information (see
Appendix A between two consecutive network layers. As derived in future sections, the proposed
objective facilitates information flow—input-to-output and vice versa, while the presumed domains
for the hidden and output layers inherently induce information compression and feature shaping.

In Sections 2.2.1 and 2.2.2, we outline the correlative mutual information-based objective and its
implementation based on samples, respectively. Section 2.3 demonstrates that the optimization
of this objective through gradient ascent naturally results in recurrent neural networks with multi-
compartment neurons. Finally, Section 2.4 explains how the optimization of the same criterion leads
to biologically plausible learning dynamics for the resulting network structure.
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2.2.1 Stochastic CorInfoMax based supervised criterion

We propose the total correlative mutual information among consecutive layers, augmented with the
mean-square-error (MSE) training loss, as the stochastic objective to be maximized:

J(r(1), . . . , r(P )) =

P−1∑
k=0

I(ϵk)(r(k), r(k+1))− β

2
E(∥yT − r(P )∥22), (1)

where, as defined in [36, 37] and in Appendix A,
→

I(ϵk)(r(k), r(k+1)) =
1

2
log det (Rr(k+1) + ϵkI)−

1

2
log det

(
R→

e
(k+1)

∗
+ ϵkI

)
, (2)

is the correlative mutual information between layers r(k) an r(k+1), Rr(k+1) = E(r(k+1)r(k+1)T ) is
the autocorrelation matrix corresponding to the layer r(k+1) activations, and R→

e
(k+1)

∗
corresponds

to the error autocorrelation matrix for the best linear regularized minimum MSE predictor of r(k+1)

from r(k). Therefore, the mutual information objective in (2) makes a referral to the regularized
forward prediction problem represented by the optimization

minimize
W

(k)
ff

E(∥→e
(k+1)

∥22) + ϵk∥W (k)
ff ∥2F s.t.

→
e
(k+1)

= r(k+1) −W
(k)
ff r(k), (3)

and e
(k+1)
∗ is the forward prediction error corresponding to the optimal forward predictor W (k)

ff,∗.

If we interpret the maximization of CMI in (2): the first term on the right side of (2) encourages the
spread of r(k+1) in its presumed domain P(k+1), while the second term incites the minimization of
redundancy in r(k+1) beyond its component predictable from r(k).

An equal and alternative expression for the CMI can be written as (Appendix A)
←

I(ϵk)(r(k), r(k+1)) =
1

2
log det(Rr(k) + ϵkI)−

1

2
log det

(
R←

e
(k)

∗
+ ϵkI

)
, (4)

where R←
e

(k)

∗
corresponds to the error autocorrelation matrix for the best linear regularized minimum

MSE predictor of r(k) from r(k+1). The corresponding regularized backward prediction problem is
defined by the optimization

minimize
W

(k)
fb

E(∥←e
(k)

∥22) + ϵk∥W (k)
fb ∥2F s.t.

←
e
(k)

= r(k) −W
(k)
fb r(k+1). (5)

We observe that the two alternative yet equivalent representations of the correlative mutual informa-
tion between layers r(k) and r(k+1) in (2) and (4) are intrinsically linked to the forward and backward
prediction problems between these layers, which are represented by the optimizations in (3) and (5), re-
spectively. As we will demonstrate later, the existence of these two alternative forms for the CMI plays
a crucial role in deriving a neural network architecture that overcomes the weight symmetry issue.

2.2.2 Sample-based supervised CorInfoMax criterion

Our aim is to construct a biologically plausible neural network that optimizes the total CMI, equation
(1), in an adaptive manner. Here, we obtain a sample-based version of (1) as a step towards that goal.

We first define the exponentially-weighted sample auto and cross-correlation matrices as follows:

R̂r(k) [t] =
1− λr

1− λt
r

t∑
i=1

λt−i
r r(k)[i]r(k)[i]

T
, R̂r(k)r(k+1) [t] =

1− λr

1− λt
r

t∑
i=1

λt−i
r r(k)[i]r(k+1)[i]

T
, (6)

for k = 0, . . . , P , respectively, where 0 ≪ λr < 1 is the forgetting factor. Next, we define two
equivalent forms of the sample-based CMI, Î(ϵ)(r(k), r(k+1))[t]:

→
Î(ϵk)(r(k), r(k+1))[t] =

1

2
log det(R̂r(k+1) [t] + ϵkI)−

1

2
log det(R̂→

e
(k+1)

∗
[t] + ϵkI), (7)

←
Î(ϵk)(r(k), r(k+1))[t] =

1

2
log det(R̂r(k) [t] + ϵkI)−

1

2
log det(R̂←

e
(k)

∗
[t] + ϵkI), (8)
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where R̂→
e

(k+1)

∗
[t] is the exponentially-weighted sample autocorrelation matrix for the forward

prediction error at level-(k + 1),
→
e
(k+1)∗

[t], corresponding to the best linear exponentially-weighted
regularized least squares predictor of r(k+1)[t] from the lower level activations r(k)[t]. Similarly,
R̂←

e
(k) [t] is the exponentially-weighted autocorrelation matrix for the backward prediction error at

level-(k),
←
e
(k)

[t], corresponding to the best linear exponentially-weighted regularized least squares
predictor of r(k)[t] from the higher level activations r(k+1)[t].

The sample-based CorInfoMax optimization can be written as:

maximize
r(k)[t], k = 0, . . . , P

P−1∑
k=0

Î(ϵk)(r(k), r(k+1))[t]− β

2
∥yT [t]− r(P )[t]∥22 = Ĵ(r(1), . . . , r(P ))[t]

(9a)

subject to r(k)[t] ∈ P(k), k = 1, . . . , P, (9b)

r(0)[t] = x[t], (9c)

As outlined in Appendix B, we can employ Taylor series linearization to approximate the log det
terms associated with forward and backward prediction errors in (2) and (4) in the form

log det
(
R̂→

e
(k+1) [t] + ϵkI

)
≈ 1

ϵk

t∑
i=1

λt−i
r ∥r(k+1)[i]−W

(k)
ff,∗[t]r

(k)[i]∥22 + ϵk∥W (k)
ff,∗[t]∥

2
F +Nk+1 log(ϵk) (10)

log det
(
R̂←

e
(k) [t] + ϵkI

)
≈ 1

ϵk

t∑
i=1

λt−i
r ∥r(k)[i]−W

(k)
fb,∗[t]r

(k+1)[i]∥22 + ϵk∥W (k)
fb,∗[t]∥

2
F +Nk log(ϵk), (11)

where W(k)
ff,∗[t] is the optimal linear regularized weighted least squares forward predictor coefficients

in predicting r(k+1)[i] from r(k)[i] for i = 1, . . . , t, and W
(k)
fb,∗[t] is the optimal linear regularized

weighted least squares backward predictor coefficients in predicting r(k)[i] from r(k+1)[i] for i =
1, . . . , t. Consequently, the optimal choices of forward and backward predictor coefficients are
coupled with the optimal choices of layer activations.

In the online optimization process, we initially relax the requirement on the optimality of predictors
and start with random predictor coefficient selections. During the learning process, we apply a
coordinate ascent-based procedure on activation signals and predictor coefficients. Specifically, at
time step-t, we consider two phases:

1. First, we optimize with respect to the activations {r(k)[t], k = 1, . . . , P}, where we assume
predictor coefficients to be fixed. This phase yields network structure and output dynamics,

2. Next, we update the forward and backward predictor coefficients W
(k)
ff and W

(k)
fb , for k =

1, . . . , P , to reduce the corresponding forward and backward prediction errors, respectively. This
phase provides update expressions to be utilized in learning dynamics.

As the algorithm iterations progress, the predictor coefficients converge to the vicinity of their
optimal values.

For the first phase of the online optimization, we employ a projected gradient ascent-based approach
for activations: for k = 1, . . . , P − 1, the layer activation vector r(k)[t] is included in the objective
function terms Î(ϵ)(r(k−1), r(k))[t] and Î(ϵ)(r(k), r(k+1))[t]. Therefore, to calculate the gradient with
respect to r(k)[t], we can use expressions in (7) and (8). More specifically, we choose Ĵk(r

(k))[t] =
→

Î(ϵk−1)(r(k−1), r(k))[t] +
←

Î(ϵk)(r(k), r(k+1))[t] for k = 1, . . . , P − 1, to represent the components
of the objective function in (9a) involving r(k)[t] . As described in Appendix G.1, this choice
is instrumental in avoiding weight transport problem. Similarly, we can write the component of
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the objective function in (9a) that is dependent on the final layer activations as ĴP (r
(P ))[t] =

→
Î(ϵP−1)(r(P−1), r(P ))[t]− β

2 ∥r
(P )[t]− yT [t]∥22.

Based on the derivations presented in Appendix D, which directly incorporate the approximations
from (10) and (11), we can express the gradient of the objective function in (9a) with respect to r(k),
for k = 1, . . . , P − 1 as:

∇r(k) Ĵ(r(1), . . . , r(P ))[t] = 2γBr(k) [t]r(k)[t]−
1

ϵk−1

→
e
(k)

[t]− 1

ϵk

←
e
(k)

[t], (12)

where γ = 1−λr

λr
,

→
e
(k)

[t] = r(k)[t]−W
(k−1)
ff [t]r(k−1)[t],

←
e
(k)

[t] = r(k)[t]−W
(k)
fb [t]r(k+1)[t], (13)

and Br(k) [t] = (R̂r(k) [t] + ϵk−1I)
−1 ≈ (R̂r(k) [t] + ϵkI)

−1. Similarly, for k = P , we have

∇r(P ) Ĵ(r(1), . . . , r(P ))[t] = γBr(P ) [t]r(P )[t]− 1

ϵP−1

→
e
(P )

[t]− β(r(P )[t]− yT [t]). (14)

2.3 Neural network formulation based on information maximization

In this section, we develop a biologically plausible neural network grounded on the correla-
tive information maximization-based network propagation model outlined in Section 2.2. To
achieve this, we employ projected gradient ascent optimization for determining layer activations
r(1)[t], r(2)[t], . . . , r(P )[t], which shape the network structure and dynamics, as well as updating the
corresponding synapses that govern the learning dynamics.

2.3.1 Network structure and neural dynamics

In this section, we show that the projected gradient ascent solution to the optimization in (9) defines
a multilayer recurrent neural network. To this end, we introduce the intermediate variable u(k)

as the updated layer-k activations prior to the projection onto the domain set P(k). Utilizing the
gradient expressions in (12)-(13), we can express the network dynamics for layers k = 1, . . . , P − 1
as follows (see Appendix E for details):

τu
du(k)[t; s]

ds
= −glku

(k)[t; s] +
1

ϵk
M (k)[t]r(k)[t; s]− 1

ϵk−1

→
e
(k)

u [t; s]− 1

ϵk

←
e
(k)

u [t; s], (15)

→
e
(k)

u [t; s] = u(k)[t; s]−W
(k−1)
ff [t]r(k−1)[t; s],

←
e
(k)

u [t; s] = u(k)[t; s]−W
(k)
fb [t]r(k+1)[t; s],

(16)

r(k)[t; s] = σ+(u
(k)[t; s]), (17)

where t is the discrete data index, s is the continuous time index corresponding to network dynamics,
τu is the update time constant, M (k)[t] = ϵk(2γBr(k) [t] + glkI), and σ+ represents the elementwise
clipped-ReLU function corresponding to the projection onto the nonnegative unit-hypercube B∞,+,
defined as σ+(u) = min(1,max(u, 0)).

To reinterpret the dynamics in (15) to (17) as a multi-compartmental neural network, for
k = 1, . . . , P − 1, we define the signals:

v
(k)
A [t; s] = M (k)[t]r(k)[t; s] +W

(k)
fb [t]r(k+1)[t; s], v

(k)
B [t; s] = W

(k−1)
ff [t]r(k−1)[t; s], (18)

which allow us to rewrite the network activation dynamics (15) to (17) as:

τu
du(k)[t; s]

ds
= −glku

(k)[t; s] + gA,k(v
(k)
A [t; s]− u(k)[t; s]) + gB,k(v

(k)
B [t; s]− u(k)[t; s]), (19)

r(k)[t; s] = σ+(u
(k)[t; s]), (20)

where gA,k = 1
ϵk−1

and gB,k = 1
ϵk

. Similarly, for the output layer, we employ the same expressions
as (19) and (20) with k = P , except that in this case we have:

v
(P )
A [t; s] = M (P )[t]r(k)[t; s]− (r(P )[t; s]− yT [t]), v

(P )
B [t; s] = W

(P−1)
ff [t]r(P−1)[t; s], (21)
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where gB,P = 1
ϵP−1

, gA,P = β and M (P )[t] = β−1(γBr(P ) [t] + glkI).

Remarkably, the equations (18) to (21) reveal a biologically plausible neural network that incorporates
three-compartment pyramidal neuron models, as presented in [9, 10]. This intricate architecture,
of which two-layer segment is demonstrated in Figure 1, naturally emerges from the proposed
correlative information maximization framework. In this network structure:

• u(k) embodies the membrane potentials for neuronal somatic compartments of the neurons at
layer-k, where τu is the membrane leak time constant of soma.

• v
(k)
B corresponds to membrane potentials for basal dendrite compartments, receiving feedforward

input originating from the previous layer.

• v
(k)
A denotes the membrane potentials for distal apical dendrite compartments, which gather top-

down input from the subsequent layer and lateral inputs represented by M (k)[t]r(k) in (18) and (21).
Decomposing M (k) into D(k)−O(k), we find that D(k) mirrors autapses[44], and the off-diagonal
component O(k) corresponds to lateral inhibition synapses. We use i(k) = −O(k)r(k) to represent
the activations of SST interneurons [14] that generate lateral inhibitions to the apical dendrites.

• Forward (backward) prediction errors manifest in the membrane voltage differences between soma
and basal (distal) compartments of the pyramidal neurons.

• Forward (backward) prediction coefficients W
(k)
ff (W (k)

fb ) are associated with feedforward
(top-down) synapses connecting layers (k) and (k + 1).

• The inverse of the regularization coefficient ϵk is related to the conductance between soma and den-
dritic compartments. This is compliant with the interpretation of the ϵ−1 in Appendix A.2 as the sen-
sitivity parameter that determines the contribution of the prediction errors to the CMI. Conversely,
at the output layer, the augmentation constant β corresponds to the conductance between soma and
distal compartments. This relationship can be motivated by modifying the objective in (9a) as

P−1∑
k=0

Î(ϵk)(r(k), r(k+1))[t] +
1

2

←

Î(β
−1)(r(P ),yT )[t], (22)

where, through the first-order approximation, the r(P )[t] dependent portion of
←

Î(β
−1)(r(P ),yT )[t]

can be expressed as −β∥r(P )[t]−W
(P )
fb yT [t]∥22. For accuracy, we enforce W

(P )
fb = I .

2.4 Learning dynamics

Network parameters consists of feedforward W
(k)
ff , feedback W

(k)
fb and lateral B(k) coefficients.The

learning dynamics of these coefficients are elaborated below:

• Feedforward Coefficients are connected to the forward prediction problem defined by the op-
timization in (3). We can define the corresponding online optimization objective function as

Cff (W
(k)
ff ) = ϵk∥W (k)

ff ∥2F + ∥→e
(k+1)

[t]∥22 for which the the partial derivative is given by

∂Cff (W
(k)
ff [t])

∂W
(k)
ff

= 2ϵkW
(k)
ff [t]− 2

→
e
(k+1)

[t]r(k)[t]T . (23)

In Appendix H, we provide a discussion on rewriting (23) in terms of the membrane voltage
difference between the distal apical and soma compartments of the neuron, based on the equilibrium
condition for the neuronal dynamics:

−→e
(k+1)

[t]r(k)[t]T = g−1B,k(gA,kv
(k)
A [t]− (glk + gAk

)u
(k)
∗ [t] + h∗[t])r

(k)[t]T , (24)

where h∗[t] is nonzero only for neurons that are silent or firing at the maximum rate.
• Similarly, Feedback Coefficients are connected to the backward prediction problem defined by the

optimization in (5), and the corresponding online optimization objective function as Cfb(W
(k)
fb ) =

ϵk∥W (k)
ff ∥2F + ∥←e

(k)
[t]∥22 for which the partial derivative is given by

∂Cfb(W
(k)
fb [t])

∂W
(k)
fb

= 2ϵkW
(k)
fb [t]− 2

←
e
(k)

[t]r(k+1)[t]T . (25)
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To compute the updates of both feedforward and feedback coefficients, we use the EP approach
[24], where the update terms are obtained based on the contrastive expressions of partial derivatives
in (23) and (25) for the nudge phase, i.e., β = β′ > 0, and the free phase, i.e., β = 0, :

δW
(k)
ff [t] ∝ 1

β′

(
(
→
e
(k+1)

[t]r(k)[t]T )
∣∣∣
β=β′

− (
→
e
(k+1)

[t]r(k)[t]T )
∣∣∣
β=0

)
, (26)

δW
(k)
fb [t] ∝ 1

β′

(
(
←
e
(k)

[t]r(k+1)[t]T )
∣∣∣
β=β′

− (
←
e
(k)

[t]r(k+1)[t]T )
∣∣∣
β=0

)
. (27)

• Lateral Coefficients, B(k) are the inverses of the ϵI perturbed correlation matrices. We can use
the update rule in [11] for their learning dynamics after the nudge phase:

B(k)[t+ 1] = λ−1r (B(k)[t]− γz(k)[t]z(k)[t]T ), where z(k) = B(k)[t]r(k)[t]
∣∣
β=β′

. (28)

As we derived in Appendix F, we can rewrite the update rule of the lateral weights in terms of the
updates of autapses and lateral inhibition synapses as follows:

D
(k)
ii [t+ 1] = λ−1r D

(k)
ii [t]− λ−1r ϵk2γ

2(z
(k)
i [t])2 + ϵkglk(1− λ−1r ), ∀i ∈ {1, . . . , Nk} (29)

O
(k)
ij [t+ 1] = λ−1r O(k)[t]ij + λ−1r ϵk2γ

2z
(k)
i [t]z

(k)
j [t], ∀i, j ∈ {1, . . . , Nk}, where i ̸= j (30)

3 Discussion of results

• In (A.14), we devise an update for layer activation r(k) by employing two distinct forms of the CMI

associated with r(k):
→

Î(ϵk−1)(r(k−1), r(k))[t], the CMI with the preceding layer, encompassing

the forward prediction error for estimating r(k), and
←

Î(ϵk)(r(k), r(k+1))[t], the CMI with the
subsequent layer, incorporating the backward prediction error for estimating r(k). Employing these
alternative expressions is crucial in circumventing the weight transport problem and offering a
more biologically plausible framework. For further discussion, please refer to Appendix G.

• In the context of the proposed correlative information maximization framework, forward and
backward predictive coding naturally emerges as a crucial mechanism. By incorporating both
alternative expressions of CMI, the framework focuses on minimizing both forward and backward
prediction errors between adjacent layers via feedforward and feedback connections. These
connections foster bidirectional information flow, thereby enhancing the overall learning process.

• Figure 1 depicts the interplay between the CorInfoMax objective and the corresponding network
architecture. The emergence of lateral connections and autapses can be attributed to the
maximization of the unconditional layer entropy component of the CMI, which allows for
efficient utilization of the available representation dimensions and avoids dimensional degeneracy.
Simultaneously, the minimization of conditional entropies between adjacent layers gives rise to
feedforward and feedback connections, effectively reducing redundancy within representations.

• We employ time-contrastive learning, as in GenRec [45], EP [24] and CSM [27], by implementing
separate phases with Hebbian and anti-Hebbian updates, governed by an assumed teaching signal.
It has been conjectured that the teaching signal in biological networks can be modeled by the
oscillations in the brain [2, 46, 47]. Although the oscillatory rhythms and their synchronization
in the brain are elusive, they are believed to play an important role in adaptive processes such as
learning and predicting upcoming events [48, 49].

4 Numerical experiments

In this section, we evaluate the performance of our CorInfoMax framework with two layer fully
connected networks on image classification tasks using three popular datasets: MNIST [50],
Fashion-MNIST [51], and CIFAR10 [52]. We used layer sizes of 784, 500, 10 for both MNIST and
Fashion-MNIST datasets while we used layer sizes of 3072, 1000, 10 for CIFAR10 dataset, and the
final layer size 10 corresponds to one-hot encoded ouput vectors. Further details including full set of
hyperparameters can be found in Appendix J. We compare the effectiveness of our approach against
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other contrastive methods, such as EP [24] and CSM [27], as well as explicit methods, including
PC [22] and PC-Nudge [53], when training multilayer perceptron (MLP) architectures.

We examine two distinct constraints on the activations of CorInfoMax Networks: (i) B∞,+, represent-
ing the nonnegative part of the unit hypercube, and (ii) B1,+ = {r : r ≽ 0, ∥r∥1 ≤ 1}, denoting the
nonnegative part of the unit ℓ1-norm ball [40]. Table 1 presents the test accuracy results for each algo-
rithm, averaged over 10 realizations along with the corresponding standard deviations. These findings
demonstrate that CorInfoMax networks can achieve comparable or superior performance in relation
to the state-of-the-art methods for the selected tasks. Additional information regarding these exper-
iments, as well as further experiments, can be found in the Appendix. Our code is available online1.

Table 1: Test accuracy results (mean ± standard deviation from n = 10 runs) for CorInfoMax
networks are compared with other biologically-plausible algorithms. The performance of CSM on
the CIFAR10 dataset is taken from [27], while the remaining results stem from our own simulations.

MNIST FashionMNIST CIFAR10

CorInfoMax-B∞,+ (Appendix J.4) 97.62± 0.1 88.14± 0.3 51.86± 0.3
CorInfoMax-B1,+ (Appendix J.6) 97.71± 0.1 88.09± 0.1 51.19± 0.4
EP 97.61± 0.1 88.06± 0.7 49.28± 0.5
CSM 98.08± 0.1 88.73± 0.2 40.79∗

PC 98.17± 0.2 89.31± 0.4 -
PC-Nudge 97.71± 0.1 88.49± 0.3 48.58± 0.7

Feedback Alignment (with MSE Loss) 97.99± 0.03 88.72± 0.5 50.75± 0.4
Feedback Alignment (with CrossEntropy Loss) 97.95± 0.08 88.38± 0.9 52.37± 0.4
BP (with MSE Loss) 97.58± 0.01 88.39± 0.1 52.75± 0.1
BP (with CrossEntropy Loss) 98.27± 0.03 89.41± 0.2 53.96± 0.3

5 Discussion and Conclusion

In this article, we have presented the correlative information maximization (CorInfoMax) framework
as a biologically plausible approach to constructing supervised neural network models. Our proposed
method addresses the long-standing weight symmetry issue by providing a principled solution, which
results in asymmetric forward and backward prediction networks. The experimental analyses demon-
strates that CorInfoMax networks provide better or on-par performance in image classification tasks
compared to other biologically plausible networks while alleviating the weight symmetry problem.
Furthermore, the CorInfoMax framework offers a normative approach for developing network models
that incorporate multi-compartment pyramidal neuron models, aligning more closely with the exper-
imental findings about the biological neural networks. The proposed framework is useful in obtaining
potential insights such as the role of lateral connections in embedding space expansion and avoiding
degeneracy, feedback and feedforward connections for prediction to reduce redundancy, and activation
functions/interneurons to shape feature space and compress. Despite the emphasis on supervised deep
neural networks in our work, it’s crucial to highlight that our approach—replacing the backpropaga-
tion algorithm, which suffers from the weight transportation problem, with a normative method devoid
of such issues—is potentially extendable to unsupervised and self-supervised learning contexts.

One potential limitation of our framework, shared by other supervised approaches, is the necessity for
model parameter search to improve accuracy. We discuss this issue in detail in Appendix K. Another
limitation stems from the intrinsic nature of our approach, which involves the determination of neural
activities through recursive dynamics (see Appendix J). While this aspect is fundamental to our
methodology, it does result in slower computation times compared to conventional neural networks in
digital hardware implementation. However, it is worth noting that our proposed network, characterized
by local learning rules, holds the potential for efficient and low-power implementations on future
neuromorphic hardware chips. Furthermore, our method employs the time contrastive learning
technique known as Equilibrium Propagation, which necessitates two distinct phases for learning.

1https://github.com/BariscanBozkurt/Supervised-CorInfoMax
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Appendix

A Preliminaries on correlative entropy and mutual information

In this section, we present the essential background on correlative entropy and information measures
that will be employed in our proposed approach.

A.1 Correlative entropy and correlative mutual information

Consider a random vector x ∈ Rm with a correlation matrix Rx = E(xxT ). The correlative entropy
for this random vector x is defined as follows [36, 54]:

H(ϵ)(x) =
1

2
log det(Rx + ϵI) +

m

2
log(2πe), (A.1)

where ϵ > 0 is a small positive constant. Please note that (A.1) is an adapted version of Shannon’s
differential entropy for Gaussian vectors. However, we utilize it as an entropy definition based
on second-order statistics, independent of the distribution of the vector x. Furthermore, the joint
correlative entropy of two random vectors x ∈ Rm and y ∈ Rn can be expressed as:

H(ϵ)(x,y) =
1

2
log det(R[

x
y

] + ϵI) +
m+ n

2
log det(2πe) (A.2)

=
1

2
log det

([
Rx + ϵI Rxy

Ryx Ry + ϵI

])
+

m+ n

2
log det(2πe)

=
1

2
log
(
det(Rx + ϵI) det(Ry + ϵI −RT

xy(Rx + ϵI)−1Rxy)
)

+
m+ n

2
log det(2πe)

=
1

2
log det(Rx + ϵI) +

m

2
log(2πe) +

1

2
log det(Re + ϵI) +

n

2
log(2πe),

where Rxy = E(xyT ), and Re = Ry − RT
xy(Rx + ϵI)−1Rxy is the autocorrelation matrix

of the error vector corresponding to the best linear minimum mean square estimator (MMSE) of
y from x, and the third equality is obtained by writing the determinant in terms of a principle
submatrix and its Schur’s complement [55]. This derivation naturally leads to the expression of
H(ϵ)(x,y) = H(ϵ)(x) +H(ϵ)(y|Lx). Note that we use the notation |L to distinguish that H(ϵ)(x|y)
requires to use Rx|y that is not equal to Rx −RT

yx(Ry + ϵI)−1Ryx in general. Therefore, we can
express the conditional correlative entropy definitions as [36]

H(ϵ)(y|Lx) =
1

2
log det(Ry −RT

xy(Rx + ϵI)−1Rxy + ϵI) +
n

2
log(2πe)

H(ϵ)(x|Ly) =
1

2
log det(Rx −RT

yx(Ry + ϵI)−1Ryx + ϵI) +
m

2
log(2πe).

Using the alternative Schur’s complement in (A.2), it can be also shown that H(ϵ)(x,y) = H(ϵ)(y)+
H(ϵ)(x|Ly). Based on these definitions, the correlative mutual information (CMI) is defined as
follows

I(ϵ)(x,y) = H(ϵ)(y)−H(ϵ)(y|Lx),
= H(ϵ)(x)−H(ϵ)(x|Ly), (A.3)

= H(ϵ)(x) +H(ϵ)(y)−H(ϵ)(x,y),

More explicitly, we can write the correlative mutual information using the following two alternative
yet equivalent expressions,

I(ϵ)(x,y) =
1

2
log det(Rx + ϵI)− 1

2
log det(Rx −RT

yx(Ry + ϵI)−1Ryx + ϵI),

=
1

2
log det(Ry + ϵI)− 1

2
log det(Ry −RT

xy(Rx + ϵI)−1Rxy + ϵI).

At its core, the correlative mutual information, I(ϵ)(x,y), quantifies the degree of correlation or
linear association between the random vectors x and y [36].
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A.2 On the interpretation of ϵ parameter

The definition of correlative entropy as presented in equation (A.1) includes a perturbation term, ϵ, in
the eigenvalues of the correlation matrix argument of the log-determinant. At first glance, this term
appears to function as a correction factor to compensate for rank-deficient correlation matrices of
degenerate random vectors. From this perspective, this adjustment serves two primary purposes:

i. To establish a finite lower bound for the entropy, and
ii. To circumvent numerical optimization issues, given that the derivative of the log det function is the

inverse of its argument.

In fact, robust matrix factorization methods that rely on determinant-maximization often use the
perturbation term ϵI for these reasons, as suggested by Fu et al. [56].

Beyond these, upon examining the expression for correlative mutual information more closely,

I(ϵ)(x,y) =
1

2
log det(Rx + ϵI)− 1

2
log det(Rex|y + ϵI), (A.4)

we can draw the following insights:

• The matrix Rex|y = Rx −RT
yx(Ry + ϵI)−1Ryx corresponds to the error correlation matrix for

the best linear regularized minimum mean square estimator of x from y. This estimator is obtained
as the solution of the optimization problem

minimize
Wx|y

E(∥x−Wx|yy∥22) + ϵ∥Wx|y∥2F . (A.5)

In this context, ϵ parameter acts as a regularizing coefficient for the linear estimation problem
integral to measuring linear dependence between the two arguments of the CMI.

• Maximizing the CMI given by equation (A.4) can be accomplished by increasing the correlative
entropy of x while decreasing the correlative entropy of the estimation error ex|y. Given the
relationship Rx ⪰ Rex|y , we anticipate that the choice of ϵ will primarily influence the correlative
entropy of ex|y. Indeed, since ϵ is added to all the eigenvalues of Rex|y , reducing its eigenvalues
below ϵ would have only incremental increase in the mutual information. As such, a smallerϵ value
will place greater emphasis on reducing the estimation error ex|y. Consequently, one can consider
ϵ−1 can be viewed as an indicator of the sensitivity of the CMI to the levels of estimation error
ex|y, determining how far we need to push down the estimation error values to increase the CMI.

• The role of ϵ parameter in adjusting sensitivity to estimation errors becomes evident when we lin-
earize the Rex|y dependent (second) term in (A.4) using the truncated Taylor series approximation
equation (A.8) in Appendix B (by choosing A = ϵI and ∆ = Rex|y in (A.8)):

I(ϵ)(x,y) ≈ 1

2
log det(Rx)−

ϵ−1

2
Tr(Rex|y) +

m

2
log(ϵ). (A.6)

In the above expression, we have assumed that the choice of ϵ is less than the eigenvalues of Rx, so
that we can approximate Rx + ϵI ≈ Rx, and greater than the eigenvalues of Rex|y . As apparent
from equation (A.6), ϵ−1 serves as a sensitivity parameter that determines the contribution of
estimation errors ex|y to the CMI.

B Linear approximation of correlative entropy

In this section, we provide linear approximation of the log det terms on the rightmost terms of (7) and
(8). For this purpose we utilize the the first-order Taylor series approximation of the log det function:

log det(A+∆) ≈ log det(A) + Tr(∇A log det(A)T∆) (A.7)

≈ log det(A) + Tr(A−1∆), (A.8)

assuming A is Hermitian (or real symmetric). Therefore, using (A.8) and choosing A = ϵkI and
∆ = R̂→

e
(k+1) [t], we can approximate the rightmost term of (7) corresponding to the correlative

16



entropy of forward error
→
e
(k+1)

log det
(
R̂→

e
(k+1) [t] + ϵkI

)
≈ 1

ϵk
Tr
(
R̂→

e
(k+1) [t]

)
+Nk+1 log(ϵk)

=
1

ϵk

t∑
i=1

λt−i
r ∥r(k+1)[i]−W

(k)
ff,∗[t]r

(k)[i]∥22 + ϵk∥W (k)
ff,∗[t]∥

2
F +Nk+1 log(ϵk). (A.9)

This approximation would be more accurate for prediction error correlation matrices with smaller
eigenvalues.

Similarly, using (A.8) and choosing A = ϵkI and ∆ = R̂→
e

(k) [t], we can approximate the rightmost

term of (8) corresponding to the correlative entropy of forward error
←
e
(k)

log det
(
R̂←

e
(k) [t] + ϵkI

)
≈ 1

ϵk
Tr
(
R̂←

e
(k) [t]

)
+Nk log(ϵk)

=
1

ϵk

t∑
i=1

λt−i
r ∥r(k)[i]−W

(k)
fb,∗[t]r

(k+1)[i]∥22 + ϵk∥W (k)
fb,∗[t]∥

2
F +Nk log(ϵk). (A.10)

Note that in (A.9), W(k)
ff,∗[t] denotes the optimal linear regularized weighted least squares forward

predictor coefficients in predicting r(k+1)[i] from r(k)[i] for i = 1, . . . , t. Likewise, W(k)
fb,∗[t] in

(A.10) represents the optimal linear regularized weighted least squares backward predictor coefficients
in predicting r(k)[i] from r(k+1)[i] for i = 1, . . . , t.

C Background on polytopic representations

Convex polytopes, compact sets formed by the intersections of halfspaces [57], serve as constraint do-
mains for latent representations. The choice of a particular polytope reflects the attribute assignments
to these vectors. For instance, the ℓ1-norm-ball polytope enforces sparsity and finds extensive use in
machine learning, signal processing and computational neuroscience [58, 59, 60, 61]. Conversely, the
ℓ∞-norm-ball polytope is prevalent in antisparse (democratic) representations, especially in bounded
component analysis applications [62, 63, 64].

The Polytopic Matrix Factorization (PMF) extends these examples to an infinite set of polytopes,
incorporating specific symmetry restrictions for identifiability [40]. In the PMF paradigm, observation
vectors {y1, . . . ,yN} ⊂ RM are modeled as unknown linear transformations of latent vectors
{s1, . . . , sN} from a selected polytope P:

[ y1 y2 . . . yN ]︸ ︷︷ ︸
Y

= H [ s1 s2 . . . sN ]︸ ︷︷ ︸
S

, (A.11)

where H denotes the unknown linear transformation. The PMF’s primary objective is to deduce
the factors H and S from the observation matrix Y, by exploiting the information that the columns
of S as "representative" samples from P . The shape of the chosen polytope determine the latent
vector features by combining common attributes such as sparsity, nonnegativity and anti-sparsity in
subvector level. For example, the reference [11] proposes the canonical polytope description

P =
{
s ∈ Rn | si ∈ [−1, 1]∀i ∈ Is, si ∈ [0, 1]∀i ∈ I+, ∥sJl

∥1 ≤ 1, Jl ⊆ Z+
n , l ∈ Z+

L

}
,

where L is the number of mutually sparse subvector constraints, I+ is the index set of nonnegative
elements, Is is the index set of signed elements, the sets Jl, l ∈ Z+

L are the index sets for the sparse
subvectors. The availability of infinitely many polytope options provides a powerful and diverse
toolkit for representing and characterizing latent vectors.

The online correlative information maximization solution for obtaining factors in (A.11), combined
with the polytopic constraints on the columns of S results in biologically plausible neural networks
with local learning rules [65]. These polytopic constraints manifest as piecewise linear neural
activation functions, such as ReLU and clipping functions.

In a vein similar to the unsupervised problem in [65], our proposed framework employs polytopic
representations to characterize embedding vectors for each network layer. The inclusion of polytopic
constraints influences:
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• The characterization of embeddings based on assigned attributes.
• The network’s nonlinear component via piecewise activation functions.

In summary, polytopic representations offer a versatile and mathematically rigorous framework
for modeling latent vectors in various applications, from machine learning to signal processing.
Their ability to encapsulate diverse attributes, such as sparsity and non-negativity, provides a rich
characterization of latent features.

D Gradient derivation for the CorInfoMax objective

In this section, we offer a derivation of the gradients for the CorInfoMax objective function
Ĵ(r(1), . . . , r(P )) in (9a) with respect to the layer activation vector r(k). As outlined in Section
2.2.2, the components of Ĵ(r(1), . . . , r(P )) containing r(k) can be expressed as:

Ĵk(r
(k))[t] =

→
Î(ϵk−1)(r(k−1), r(k))[t] +

←
Î(ϵk)(r(k), r(k+1))[t], (A.12)

for k = 1, . . . , P , and

ĴP (r
(P ))[t] =

→
Î(ϵP−1)(r(P−1), r(P ))[t]− β

2
∥r(P )[t]− yT [t]∥22. (A.13)

To simplify our derivations, as explained in Appendix B, we replace the correlative entropy terms
for the prediction errors (the rightmost terms of (7) and (8)) with their linear approximations in
(A.9)-(A.10). Thus, the resulting gradient with respect to r(k)[t] can be expressed as:

∇r(k) Ĵ(r(1), . . . , r(P ))[t] = ∇r(k) Ĵk(r
(k))[t]

= ∇r(k)

→
Î(ϵk−1)(r(k−1), r(k))[t] +∇r(k)

←
Î(ϵk)(r(k), r(k+1))[t]

=
1

2
∇r(k)(log det(R̂r(k) [t] + ϵk−1I) + log det(R̂r(k) [t] + ϵkI))

− 1

ϵk−1

→
e
(k)

[t]− 1

ϵk

←
e
(k)

[t], (A.14)

where

→
e
(k)

[t] = r(k)[t]−W
(k−1)
ff [t]r(k−1)[t],

←
e
(k)

[t] = r(k)[t]−W
(k)
fb [t]r(k+1)[t] (A.15)

are the forward and backward prediction errors at level-k, based on the current estimates of the
corresponding predictor matrices. Following the procedure detailed in [11], for the gradient term in
(A.14), we obtain:

1

2
∇r(k)(log det(R̂r(k) [t] + ϵk−1I) + log det(R̂r(k) [t] + ϵkI)) = 2γBr(k) [t]r(k)[t], (A.16)

where Br(k)[t] = (R̂r(k)[t] + ϵk−1I)
−1 ≈ (R̂r(k)[t] + ϵkI)

−1 and γ = 1−λr

λr
. The gradient of the

objective for the final layer can be written as:

∇r(P ) ĴP (r
(P ))[t] = γBr(P ) [t]r(P )[t]− 1

ϵP−1

→
e
(P )

[t]− β(r(P )[t]− yT [t]). (A.17)

In conclusion, combining expressions (A.18)-(A.17), we can formulate:

∇r(k) Ĵ(r(1), . . . , r(P ))[t] = 2γBr(k) [t]r(k)[t]−
1

ϵk−1

→
e
(k)

[t]− 1

ϵk

←
e
(k)

[t], (A.18)

for k = 1, . . . , P − 1, and

∇r(P ) Ĵ(r(1), . . . , r(P ))[t] = γBr(P ) [t]r(P )[t]− 1

ϵP−1

→
e
(P )

[t]− β(r(P )[t]− yT [t]). (A.19)
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E Derivation of CorInfoMax network dynamics

In this section, we provide details about the derivation of the CorInfoMax network dynamics equations
(15)-(17) in Section 2.3.1.

As discussed in Section 2.2.2, network dynamics naturally emerge from the application of the
projected gradient ascent algorithm to obtain solution of the optimization problem (9). Therefore,
we update layer activations r(k)[t] using ∇r(k) Ĵ(r(1), . . . , r(P )) and then project the result to the
presumed domain P(k) = B∞,+.

Following the approach in [66], we define pre-projection signal u(k), which is updated with gradient,
and then project it onto P(k) = B∞. We use continuous dynamic update in the form

τu
du(k)[t; s]

ds
= ∇(k)

r Ĵ(r(1), . . . , r(P ))[t; s] (A.20)

r(k)[t; s] = σ+(u
(k)[t; s]). (A.21)

In above equations, t is the discrete data index, referring to the index of input (x[t]) and label (yT [t])
samples, as defined in Section 2.1. Whereas, s is the continuous time index corresponding to network
dynamics. Furthermore, σ+ represents the elementwise clipped-ReLU function corresponding to the
projection onto the nonnegative unit-hypercube B∞,+, defined as σ+(u) = min(1,max(u, 0)).

We can plug in the gradient expression in (12) in (A.20) to obtain

τu
du(k)[t; s]

ds
= 2γBr(k) [t]r(k)[t; s]−

1

ϵk−1

→
e
(k)

[t; s]− 1

ϵk

←
e
(k)

[t; s] (A.22)

→
e
(k)

u [t; s] = u(k)[t; s]−W
(k−1)
ff [t]r(k−1)[t; s],

←
e
(k)

u [t; s] = u(k)[t; s]−W
(k)
fb [t]r(k+1)

(A.23)

r(k)[t; s] = σ+(u
(k)[t; s]). (A.24)

In order to covert neural dynamics in (A.22)-(A.24) to leaky-integrate-and-fire form, we add leaky
term −glku

(k)[t; s] and modify the output feedback form to compensate this addition:

τu
du(k)[t; s]

ds
= −glku

(k)[t; s] + (2γBr(k) [t] + glkI)r
(k)[t]− 1

ϵk−1

→
e
(k)

[t]− 1

ϵk

←
e
(k)

[t] (A.25)

→
e
(k)

u [t; s] = u(k)[t; s]−W
(k−1)
ff [t]r(k−1)[t; s],

←
e
(k)

u [t; s] = u(k)[t; s]−W
(k)
fb [t]r(k+1)

(A.26)

r(k)[t; s] = σ+(u
(k)[t; s]). (A.27)

Finally, substituting M (k)[t] = ϵk(2γBr(k) [t] + glkI), we can rewrite the neural dynamics as

τu
du(k)[t; s]

ds
= −glku

(k)[t; s] +
1

ϵk
M (k)[t]r(k)[t]− 1

ϵk−1

→
e
(k)

[t]− 1

ϵk

←
e
(k)

[t] (A.28)

→
e
(k)

u [t; s] = u(k)[t; s]−W
(k−1)
ff [t]r(k−1)[t; s],

←
e
(k)

u [t; s] = u(k)[t; s]−W
(k)
fb [t]r(k+1)

(A.29)

r(k)[t; s] = σ+(u
(k)[t; s]). (A.30)

F Derivation of lateral weight updates in terms of autopses and lateral
inhibition synapses

Here, we provide the derivation of the lateral weight updates provided in (29) and (30). Recall that in
Section 2.3.1, we defined M (k)[t] = ϵk(2γBr(k) [t] + glkI). Therefore, using (28), we can write:

M(k)[t+ 1] = ϵk(2γλ
−1
r (B(k)[t]− γz(k)[t]z(k)[t]T ) + glkI) (A.31)

= λ−1r ϵk2γB
(k)[t]− λ−1r ϵk2γ

2z(k)[t]z(k)[t]T + ϵkglkI (A.32)
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Using the relationship B(k)[t] = 1
ϵk2γ

M(k)[t]− glk
2γ I, we can rearrange the right-hand side of (A.32)

such that

M(k)[t+ 1] = λ−1r M(k)[t]− λ−1r ϵk2γ
2z(k)[t]z(k)[t]T + ϵkglk(1− λ−1r )I (A.33)

Here, z(k)[t] =
(

1
ϵk2γ

M(k)[t]r(k) − glk
2γ r

(k)
) ∣∣∣

β=β′
. It’s worth noting that in Section 2.3.1, we

decomposed M(k)[t] into D(k)[t] and O(k)[t] as M(k)[t] = D(k)[t]−O(k)[t], representing autapses
and lateral inhibition synapses, respectively. Therefore, the update rule in (A.33) leads to the following
updates:

D
(k)
ii [t+ 1] = λ−1r D

(k)
ii [t]− λ−1r ϵk2γ

2(z
(k)
i [t])2 + ϵkglk(1− λ−1r ), ∀i ∈ {1, . . . , Nk} (A.34)

O
(k)
ij [t+ 1] = λ−1r O(k)[t]ij + λ−1r ϵk2γ

2z
(k)
i [t]z

(k)
j [t], ∀i, j ∈ {1, . . . , Nk}, where i ̸= j (A.35)

G On the asymmetry of feedforward and feedback weights

In the main article, we emphasized that one of the key contributions of the proposed supervised
CorInfoMax framework is to offer a natural resolution to the weight symmetry problem found in
some biologically plausible neural network frameworks. In this section, we aim to expand upon this
aspect and supplement the discussion provided in Section 3.

G.1 The importance of the choice of alternative CMI expressions

In developing the update formula for the layer activation r(k), we used the gradient (A.14). This

gradient comprises two alternative expressions of CMI: the first,
→

Î(ϵk−1)(r(k−1), r(k))[t] represents
the CMI with the preceding layer, incorporating the forward prediction error for estimating r(k).

The second,
←

Î(ϵk)(r(k), r(k+1))[t], signifies the CMI with the subsequent layer, encompassing the
backward prediction error for forecasting r(k). These carefully selected expressions were pivotal in
realizing a canonical network model that is free from the weight symmetry issue.

To underscore the significance of our selection, let’s examine an alternate form of (A.14):

∇r(k) Ĵk(r
(k))[t] = ∇r(k)

→
Î(ϵk−1)(r(k−1), r(k))[t] +∇r(k)

→
Î(ϵk)(r(k), r(k+1))[t]

=
1

2
∇r(k)(log det(R̂r(k) [t] + ϵk−1I)−

1

ϵk−1

→
e
(k)

[t]− 1

ϵk
W

(k)
ff

T→
e
(k+1)

[t]. (A.36)

In this case, both the CMI expressions are founded on forward prediction errors. The gradient

expression in (A.36) incorporates both the forward prediction error
→
e
(k)

[t] and the backpropagated

forward prediction error
→
e
(k+1)

[t], weighted by W
(k)
ff

T
. Consequently, choosing (A.36) would result

in a derived network model displaying symmetric feedforward and feedback weights.

This condition is typically encountered in predictive coding-based supervised schemes, such as
[22, 23], where the loss function is formulated based on feedforward prediction errors, and the
symmetric feedback path arises from calculating the gradient for this loss function. Recently, Golkar
et al. [10] proposed a loss function that involves two alternative feedforward prediction error
elements for the same branch. By coupling this with an upper bound optimization and a whitening
assumption, they manage to sidestep the weight symmetry issue. In contrast, our CorInfoMax
framework provides a natural solution to the weight transport problem encountered in predictive
coding networks by carefully selecting alternative CMI expressions, thus eliminating the need for the
whitening assumption.

G.2 The analytical comparison of forward and backward prediction coefficients

Regarding the correlative mutual information component of the proposed stochastic objective pre-
sented in (1), the optimal solutions for both feedforward and feedback weights are found as solutions
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to problems (3) and (5) respectively. To be more specific, these expressions can be framed as follows:

W
(k)
ff,∗ = RT

r(k)r(k+1)(Rr(k) + ϵkI)
−1, (A.37)

W
(k)
fb,∗ = Rr(k)r(k+1)(Rr(k+1) + ϵkI)

−1. (A.38)

Consequently, the condition W
(k)
ff, = W

(k)
fb,

T
does not generally hold true. Symmetry might be

anticipated in very specific scenarios - such as when layer activations are signed with a zero mean,
and the autocorrelation matrices meet the whiteness condition, i.e., Rr(k) = σ2

rI and Rr(k+1) = σ2
rI.

This analysis only considers the mutual information maximization component of the objective, yet it
offers insight into the expected asymmetry of the forward and backward weights.

While this analysis focuses solely on the mutual information maximization component of the objective,
it still provides valuable insight into the anticipated asymmetry of the forward and backward weights.

G.3 Empirical angle between forward and backward weights

To test the level of symmetry between the forward prediction synaptic weight matrix W
(k)
ff and the

transpose of the backward prediction synaptic weight matrix W
(k)
fb , we investigate the cosine angle

between them. This measure is calculated using [17]:

Θ(k) = arccos

 Tr
(
W

(k)
ff W

(k)
fb

)
∥W (k)

ff ∥F ∥W (k)
fb ∥F

 . (A.39)

This metric serves as an indicator of alignment - with a cosine angle of Θ(k) = 0 degrees signifying
perfect symmetry, and Θ(k) = 90 degrees indicating orthogonality and, thus, a significant degree of
asymmetry. To provide a clearer illustration of the asymmetry between feedforward and feedback
weights for the proposed CorInfoMax networks, we carried out a numerical evaluation of this metric
in the context of the experiments documented in Table 1. It’s worth noting that in these experiments,
the feedforward and feedback weights were independently initialized with random values.
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Figure 2: The angle between the feedforward and the transpose of the feedback weights between
hidden and output layers (averaged over n = 10 runs associated with the corresponding ± std
envelopes) as a function of weight update iterations for CorInfoMax-B∞,+.

Figure 2 presents the experimental alignment results as a function of iterations for the MNIST,
Fashion MNIST, and CIFAR10 datasets. According to this figure, the curves initially start at 90
degrees due to the independent random selection of initial weights. As the iterations progress, the
angle does indeed lessen, however, the steady-state levels largely persist, suggesting a noteworthy
degree of asymmetry between the feedforward and feedback weights.
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H Alternative expression for the feedforward weight updates

In Section 2.4, we derived the partial derivative of the forward prediction cost with respect to the
feedforward weights as follows:

∂Cff (W
(k)
ff [t])

∂W
(k)
ff

= 2ϵkW
(k)
ff [t]− 2

→
e
(k+1)

[t]r(k)[t]T . (A.40)

In this equation,
→
e
(k+1)

[t] symbolizes the feedforward error value at the point when system dynamics
have stabilized. In order to characterize this steady state value, we look at the optimal value of the
optimization problem employed to derive the system dynamics:

maximize
r(k)[t]

(
1
2 (log det(R̂r(k) [t] + ϵk−1I) + log det(R̂r(k) [t] + ϵkI))

− 1
2ϵk−1

∥∥∥∥→e (k)
[t]

∥∥∥∥2
2

− 1
2ϵk

∥∥∥∥←e (k)
[t]

∥∥∥∥2
2

)
(A.41)

subject to 0 ≼ r(k)[t] ≼ 1.

We formulate the corresponding Lagrangian function for this optimization as

L(r(k)[t],q1[t],q2[t]) = O(r(k)[t]) + q1[t]
T (r(k)[t]) + q2[t]

T (1− r(k)[t]) (A.42)

where O(r(k)[t]) corresponds to the objective in(A.41), and q1[t],q2[t] ≽ 0. Applying the KKT
optimality conditions [67], we find

∇r(k)L(r
(k)
∗ [t],q1∗[t],q2∗[t]) = 0, (A.43)

at the optimal point (r(k)∗ [t],q1∗,q2∗[t]). This results in

2gB,k
→
e
(k+1)

∗ [t] + 2
(
gA,kv

(k)
A [t]− (glk + gAk

)r
(k)
∗ [t]

)
+ q1∗[t] + q2∗[t] = 0, (A.44)

where q1∗[t] and q2∗[t] are entirely null except at the indices where r
(k)
∗ [t] equals 0 or 1, owing to

the nonnegative-clipping operation of σ+(u
(k)
∗ [t]).

Thus, by defining q∗[t] = q1∗[t] + q2∗[t], the outer product term in (A.40) used in the feedforward
weight update can be equivalently expressed as

−2
→
e
(k+1)

[t]r(k)[t]T =
2

gB,k

(
gA,kv

(k)
A [t]− (glk + gAk

)r
(k)
∗ [t] +

1

2
q∗[t]

)
r(k)[t]T . (A.45)

Based on r
(k)
∗ [t] = σ+(u

(k)
∗ [t]), we can express the relationship between r

(k)
∗ [t] and u

(k)
∗ [t] as

r
(k)
∗ [t] = u

(k)
∗ [t]+d[t], where d[t] has non-zero values only at the indices u(k) is negative or exceeds

1. Consequently, we can rewrite the outer product term in (A.45) as

−2
→
e
(k+1)

[t]r(k)[t]T =
2

gB,k

(
gA,kv

(k)
A [t]− (glk + gAk

)u
(k)
∗ [t] + h∗[t]

)
r(k)[t]T , (A.46)

where h∗[t] =
1
2q∗[t]− (glk + gAk

)d[t].

Ultimately, following a similar approach as in [10], we infer that the update expression for the
feedforward term can be derived from the difference between the soma’s membrane voltages and the
distal apical compartments. This conclusion aligns with experimental observations that emphasize
the dependence of basal synaptic plasticity on apical calcium plateau potentials [7].

I Employing sparsity assumption on neuronal activities

In this section, we elaborate on the structure of the CorInfoMax network and the corresponding
neuronal dynamics that emerge with the selection of the activation domain P(k) = B1,+ = {r :
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∥r∥1 ≤ 1,0 ≼ r}. It’s important to note that this domain corresponds to the intersection of the
ℓ1-norm ball and the nonnegative orthant.

To derive the network dynamics corresponding to r(k)[t], we consider the following constrained
optimization similar to (A.41),

maximize
r(k)[t]

(
1
2 (log det(R̂r(k) [t] + ϵk−1I) + log det(R̂r(k) [t] + ϵkI))

− 1
2ϵk−1

∥∥∥∥→e (k)
[t]

∥∥∥∥2
2

− 1
2ϵk

∥∥∥∥←e (k)
[t]

∥∥∥∥2
2

)
(A.47)

subject to ∥r(k)[t]∥1 ≤ 1,

0 ≼ r(k)[t].

We can write down the Lagrangian min-max problem corresponding to this optimization as

minimize
q(k)[t]≥0

maximize
r(k)[t]≽0

L(r(k)[t], q(k)[t]) = O(r(k)[t]) + q(k)[t](1− ∥r(k)[t]∥1). (A.48)

Here O(r(k)[t]) signifies the objective in (A.47). By applying the proximal gradient update [68] for
r(k)[t] using the gradient expression in (A.14), we can represent the output dynamics for layer-k as

τu
du(k)[t; s]

ds
= −glku

(k)[t; s] +
1

ϵk
M (k)[t]r(k)[t; s]− 1

ϵk−1

→
e
(k)

u [t; s]− 1

ϵk

←
e
(k)

u [t; s],

→
e
(k)

u [t; s] = u(k)[t; s]−W
(k−1)
ff [t]r(k−1)[t; s],

←
e
(k)

u [t; s] = u(k)[t; s]−W
(k)
fb [t]r(k+1)[t; s],

r(k)[t; s] = ReLU(u(k)[t; s]− q(k)[t; s]1).

In this formulation, we introduce the intermediate variable u(k), where ReLU represents the element-
wise rectified linear unit. We then define the apical and basal potentials as

v
(k)
A [t; s] = M (k)[t]r(k)[t; s] +W

(k)
fb [t]r(k+1)[t; s]− 1

gA,k
q(k)[t; s]1,

v
(k)
B [t; s] = W

(k−1)
ff [t]r(k−1)[t; s].

With these potentials in place, we can restate the output dynamics in a format similar to (19) and (20),

τu
du(k)[t; s]

ds
= −glku

(k)[t; s] + gA,k(v
(k)
A [t; s]− u(k)[t; s]) + gB,k(v

(k)
B [t; s]− u(k)[t; s]),

(A.49)

r(k)[t; s] = ReLU(u(k)[t; s]). (A.50)

For the Lagrangian variable q(k)[t; s], we can derive the update based on the dual minimization as
follows,

da(k)[t; s]

ds
= −a(k)[t; s] +

Nk∑
j=1

r
(k)
j [t; s]− 1 + q(k)[t; s], q(k)[t; s] = ReLU(a(k)[t; s]). (A.51)

In the above formulation, the Lagrangian variable q(k) equates to an inhibitory inter-neuron that re-
ceives input from all neurons of layer-k and generates an inhibitory signal to the apical compartments
of all these neurons.
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J Supplementary on numerical experiments

In the forthcoming subsections, we delve into the specifics of our experimental setup, which covers
everything from hyperparameters to an in-depth analysis. We utilize four image classification tasks to
evalutate the effectiveness of our proposed framework: MNIST [50], Fashion MNIST [51], CIFAR10,
and CIFAR100 [52]. These image datasets are all acquired from the Pytorch library [69].

The MNIST dataset includes 60000 grayscale training images of hand-drawn digits and 10000 test
images, each with a dimension of 28× 28. The Fashion MNIST dataset mirrors the MNIST in terms
of format, size, and quantity of training and test images. However, instead of digits, it features images
of clothing items, divided into 10 categories.

On a larger scale, we have the CIFAR10 and CIFAR100 datasets, which contain 32×32 RGB images.
CIFAR10 consists of 50000 training images and 10000 test images, each associated with one of
10 object labels. CIFAR100, while maintaining the same quantity of training and test images as
CIFAR10, is distinguished by its 100 object categories.

We initially map the image pixels to the range [0, 1] by rescaling them by 255. For the CIFAR10 and
CIFAR100 datasets, normalization is performed using the mean and standard deviation values cited
in the published codes of [25, 26]. To accommodate our training of MLP architectures, the images
are flattened prior to being fed into the neural networks. Lastly, we have opted not to employ any
augmentation in our numerical experiments.

J.1 On the computation of neural dynamics

The neural dynamics equations defined by (19)-(20) implicitely determines the input-output relations
of the CorInfoMax-B∞,+ network for each segments. We obtain the solution of these equations
by applying the discrete-time method that is provided in Algorithm 1. Within this algorithm, µu[s]
refers to the learning rate of the neural dynamics during the gradual time scale indicated by index s.
Additionally, smax stands for the highest count of iterations in the loop-driven calculations of neural
dynamics.

Algorithm 1 CorInfoMax neural dynamic iterations: P(k) = B∞,+

1: Initialize r(k)[t; 1], u(k)[t; 1], µu[1], smax, and s = 1
2: while s < smax do
3: for k = 1, . . . , P do
4: τu

du(k)[t;s]
ds = −glku

(k)[t; s] + gA,k(v
(k)
A [t; s]− u(k)[t; s]) + gB,k(v

(k)
B [t; s]− u(k)[t; s])

5: u(k)[t; s+ 1] = u(k)[t; s] + µu[s]τu
du(k)[t;s]

ds

6: r(k)[t; s+ 1] = σ+(u
(k)[t; s+ 1])

7: end for
8: s = s+ 1, and adjust µu[s] if necessary.
9: end while

Similarly, the equations defined by (A.49), (A.50), and (A.51 implicitely determines the input-output
relations of the CorInfoMax-B1,+ network for each segment with an additional inhibition signal
q(k). In an analogous manner, we use the following discrete-time method outlined in Algorithm 2 to
obtain the solution of these equations. In contrast to Algorithm 1, Algorithm 2 introduces an extra
hyperparameter denoted as µa[s]. This hyperparameter governs the learning rate of supplementary
inhibitory neurons q(k). Detailed discussions concerning the specific values of each hyperparameter
related to the neural dynamics for individual tasks are presented in the subsequent subsections.
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Algorithm 2 CorInfoMax neural dynamic iterations: P(k) = B1,+

1: Initialize r(k)[t; 1], u(k)[t; 1], a(k)[t; 1], q(k)[t; 1], µu[1], µa[1], smax, and s = 1
2: while s < smax do
3: for k = 1, . . . , P do
4: τu

du(k)[t;s]
ds = −glku

(k)[t; s] + gA,k(v
(k)
A [t; s]− u(k)[t; s]) + gB,k(v

(k)
B [t; s]− u(k)[t; s])

5: da(k)[t;s]
ds = −a(k)[t; s] +

∑Nk

j=1 r
(k)
j [t; s]− 1 + q(k)[t; s]

6: u(k)[t; s+ 1] = u(k)[t; s] + µu[s]τu
du(k)[t;s]

ds

7: r(k)[t; s+ 1] = ReLU(u(k)[t; s+ 1])

8: a(k)[t; s+ 1] = a(k)[t; s]) + µa[s]
da(k)[t;s]

ds

9: q(k)[t; s+ 1] = ReLU(a(k)[t; s+ 1])
10: end for
11: s = s+ 1, and adjust µu[s] and µa[s] if necessary.
12: end while

J.2 Learning Dynamics

We outline the comprehensive learning dynamics of our proposed framework in Algorithm 3. As
we mentioned earlier, we adopt the Equilibrium Propagation technique [24], leading our approach
through two distinct phases of neural dynamics prior to weight updates: i) the free phase, and ii)
the nudged phase. Initially, we execute the free phase by setting β = 0. Subsequently, we proceed
with the nudged phase, activating the neural dynamics with β = β′ > 0. The adjustments to the
feedforward and feedback weights are then determined by contrasting neural activities between the
nudged and free phases. Concerning the update equation for the forward weights in (26), the error

vector
→
e
(k+1)

[t] evaluated at (
→
e
(k+1)

[t]r(k)[t]T )
∣∣
β=β′

corresponds to
→
e
(k)

[t]β=β′ = r(k)[t]β=β′ −
W

(k−1)
ff [t]r(k−1)[t]β=β′ . Similarly, for the update expression of the backward weights in (27),

the error vector
←
e
(k)

[t] at (
←
e
(k)

[t]r(k+1)[t]T )
∣∣
β=β′

corresponds to
←
e
(k)

[t]
∣∣
β=β′

= r(k)[t]
∣∣
β=β′

−
W

(k)
fb [t]r(k+1)[t]

∣∣
β=β′

. In Algorithm 3, the learning rates for the forward and backward weights are
denoted as µff and µfb, respectively. Lateral weight updates adhere to the learning rule outlined in
[11], and we rewrite them in terms of autapses and lateral inhibition synapses (Appendix F). These
updates are performed based on the neural activities subsequent to the nudged phase.

Algorithm 3 CorInfoMax network learning dynamics

1: Initialize network parameters: W (k)
ff [1], W (k)

fb [1], B(k)[1], ϵk, (for each k), λr, glk
2: Initialize hyperparameters: β′, Tfree, Tnudged, µff, µfb, µu, µa (if P = B1,+)
3: for t = 1, 2, . . . do
4: Run neural dynamics with β = 0 for smax = Tfree to collect r(k)[t]

∣∣
β=0

( k = 1, . . . P )

5: Run neural dynamics with β = β′ for smax = Tnudged to collect r(k)[t]
∣∣
β=β′

( k = 1, . . . P )
6: Update synaptic weights with (26) and (27) for each k:

W
(k)
ff [t+ 1] = W

(k)
ff [t] + µff

1

β′

(
(
→
e
(k+1)

[t]r(k)[t]T )

∣∣∣∣
β=β′

− (
→
e
(k+1)

[t]r(k)[t]T )

∣∣∣∣
β=0

)

W
(k)
fb [t+ 1] = W

(k)
fb [t] + µfb

1

β′

(
(
←
e
(k)

[t]r(k+1)[t]T )

∣∣∣∣
β=β′

− (
←
e
(k)

[t]r(k+1)[t]T )

∣∣∣∣
β=0

)

7: Update lateral weights for each k (see Appendix F):

D
(k)
ii [t+ 1] = λ−1r D

(k)
ii [t]− λ−1r ϵk2γ

2(z
(k)
i [t])2 + ϵkglk(1− λ−1r ), ∀i ∈ {1, . . . , Nk}

O
(k)
ij [t+ 1] = λ−1r O

(k)
ij [t] + λ−1r ϵk2γ

2z
(k)
i [t]z

(k)
j [t], ∀i, j ∈ {1, . . . , Nk}, where i ̸= j

8: end for
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J.3 Description of hyperparameters

In the upcoming sections, we present the hyperparameters and their effects in our experiments.
Therefore, Table 2 describes notation for the hyperparameters used in CorInfoMax neural dynamics
and learning updates.

Table 2: Description of the hyperparameter notations.

Hyperparameter Description

Architecture An array containing the dimension of each layer.
Tfree Number of neural dynamics iterations for the free phase.
Tnudged Number of neural dynamics iterations for the nudged phase.
µff An array containing the learning rates for feedforward weights.
µfb An array containing the learning rates for feedback weights.
λr Forgetting factor for sample the auto correlation matrices in (6).
ϵk Perturbation coefficient for autocorrelation matrices in (2) and (4).
β′ Nudging parameter for the nudged neural dynamics.
glk Leak coefficient for the neural dynamics in (20) and (A.50).
µu Learning rate for the neural dynamics in Algorithm 1 and 2.
µa Learning rate for the inhibition neuron in Algorithm 2.
lr decay Learning rate decay that multiplies the µff and µfb after each epoch.

J.4 Two layer CorInfoMax-B∞,+ network

In this section, we provide supplementary experimental results for the CorInfoMax-B∞,+ network
with a single hidden layer.

J.4.1 Network architecture

Figure 3 provides a depiction of a CorInfoMax network with a single hidden layer. In this instance,
both the hidden and output layers have the same constraint set P = B∞,+.

Figure 3: Two layer correlative information maximization based neural network with non-negative
antisparsity constraint: 0 ≼ r(l) ≼ 1, l = 1, 2.

J.4.2 Hyperparameters

Table 3 provides the hyperparameters to train 2-layer CorInfoMax networks on MNIST, Fashion
MNIST, and CIFAR10, for which the corresponding test accuracy results are provided in Section 4
and in Appendix J.4.3.
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Table 3: Hyperparameters used to train CorInfoMax-B∞,+ networks with single hidden layer. (In the
row stating the lr decay, ep. and O/W means epoch and otherwise, respectively.)

Hyperparameter MNIST Fashion-MNIST CIFAR10

Batch size 20 20 20
Architecture [784, 500, 10] [784, 500, 10] [3072, 1000, 10]
Tfree 30 30 30
Tnudged 10 10 10
µff [1.0, 0.7] [0.3, 0.22] [0.08, 0.04]
µfb [−, 0.15] [−, 0.07] [−, 0.04]
λr 1− 10−5 1− 10−5 1− 5× 10−5

ϵk 0.15 ∀k 0.15 ∀k 0.15 ∀k
β′ 1.0 1.0 1.0
glk 0.5 0.3 0.1
µu max{ 0.05

s×10−2+1 , 10
−3} max{ 0.07

s×10−2+1 , 10
−3} 0.05

lr decay
{

0.95 ep. < 15
0.9 O/W.

{
0.95 ep. < 20
0.9 20 ≤ ep. < 25
0.8 O/W.

{
0.95 ep. < 15
0.9 O/W.

J.4.3 Test accuracy results

Figure 4 compares the test accuracy performance of CorInfoMax-B∞,+ network (as a function of
training epochs) with CSM, EP, PC, and PC-Nudge algorithms for the MNIST dataset.
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Figure 4: Test accuracy convergences of CorInfoMax-B∞,+ networks and other (CSM, EP, PC,
and PC-Nudge) algorithms as a function of epochs (averaged over n = 10 runs associated with the
corresponding ± std envelopes) for the MNIST dataset.

Figure 5 compares the test accuracy performance of CorInfoMax-B∞,+ network (as a function of
training epochs) with CSM, EP, PC, and PC-Nudge algorithms for the Fashion MNIST dataset.
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Figure 5: Test accuracy convergences of CorInfoMax-B∞,+ networks and other (CSM, EP, PC,
and PC-Nudge) algorithms as a function of epochs (averaged over n = 10 runs associated with the
corresponding ± std envelopes) for the Fashion MNIST dataset.

Figure 6 compares the test accuracy performance of CorInfoMax-B∞,+ network (as a function of
training epochs) with CSM, EP, PC, and PC-Nudge algorithms for the CIFAR10 dataset.
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Figure 6: Test accuracy convergences of CorInfoMax-B∞,+ networks and other (CSM, EP, PC,
and PC-Nudge) algorithms as a function of epochs (averaged over n = 10 runs associated with the
corresponding ± std envelopes) for the CIFAR10 dataset.
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J.5 Three layer CorInfoMax-B∞,+ network

In this section, we consider the extension of the CorInfoMax-B∞,+ network in Figure 3, obtained by
inserting an additional hidden layer.

J.5.1 Hyperparameters

Table 4: Hyperparameters used to train CorInfoMax-B∞,+ networks with two hidden layers.(In the
row stating the lr decay, ep. and O/W means epoch and otherwise, respectively.)

Hyperparameter MNIST CIFAR10 CIFAR100

Batch size 20 20 20
Architecture [784, 500, 500, 10] [3072, 1000, 500, 10] [3072, 2000, 1000, 100]
Tfree 30 30 50
Tnudged 10 10 20
µff [1.1, 0.75, 0.6] [0.11, 0.06, 0.035] [0.18, 0.15, 0.09]
µfb [−, 0.17, 0.07] [−, 0.045, 0.015] [−, 0.08, 0.06]
λr 1− 10−5 1− 10−5 1− 10−5

ϵk 0.15 ∀k 0.15 ∀k 0.15 ∀k
β′ 1.0 1.0 1.0
glk 0.5 0.1 0.1
µu 0.05 0.05 0.06

lr decay
{

0.95 ep. < 15
0.9 O/W.

{
0.95 ep. < 15
0.9 O/W.

{
0.99 ep. < 20
0.9 O/W.

J.5.2 Test accuracy results

Table 5 displays the test accuracy results for the 3-layer CorInfoMax-B∞,+ networks on MNIST,
CIFAR10 and CIFAR100 datasets in comparison with Feedback Alignment and Backpropagation
algorihtms.

Table 5: Test accuracy (n = 10 runs ± stddev) of CorInfoMax-B∞,+ networks with two hidden
layers.

MNIST CIFAR10 CIFAR100

Top-1 (%) Top-1 (%) Top-1 (%) / Top5 (%)

CorInfoMax-B∞,+ 97.58± 0.1 50.97± 0.4 20.84± 0.4 / 37.86± 0.8

Feedback Alignment (with MSE Loss) 98.18± 0.0 50.26± 1.4 - / -
Feedback Alignment (with CrossEntropy Loss) 97.96± 0.2 51.64± 0.6 - / -
BP (with MSE Loss) 97.74± 0.1 55.49± 0.4 26.56± 0.2 / 40.64± 0.4
BP (with CrossEntropy Loss) 98.28± 0.08 56.14± 0.3 28.93± 0.3 / 54.13± 0.4
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Figure 7 reports the test accuracy performance of CorInfoMax-B∞,+ network with two hidden layers
as a function of training epochs for the MNIST, CIFAR10 and CIFAR100 image classification tasks.
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Figure 7: Test accuracy convergence of CorInfoMax-B∞,+ network with two hidden layers as a
function of epochs (averaged over n = 10 runs associated with the corresponding ± std envelopes)
for the (a) MNIST dataset, (b) CIFAR10 dataset, and (c) CIFAR100 dataset (Top-1(%) and Top-5(%)
test accuracy convergences)

J.5.3 Angle measurement results

Figure 8 provides the angle between feedforward and the transpose of the feedback weights (as
defined in (A.39)) results for the 3-layer CorInfoMax-B∞,+ network for the MNIST, CIFAR10 and
CIFAR100 datasets. These results also confirm the asymmetry between the feedforward and feedback
weights corresponding to the same segment.

0 20 40 60 80 100 120 140
Number of Iterations / 103

65

70

75

80

85

90

An
gl

e 
(in

 d
eg

re
e)

Θ(2)

Θ(3)

(a)

0 20 40 60 80 100 120
Number of Iterations / 103

70

75

80

85

90

An
gl

e 
(in

 d
eg

re
e)

Θ(2)

Θ(3)

(b)

0 20 40 60 80 100 120
Number of Iterations / 103

80

82

84

86

88

90

An
gl

e 
(in

 d
eg

re
e)

Θ(2)

Θ(3)

(c)

Figure 8: The angle between the feedforward and the transpose of the feedback weights (based on
(A.39) for the 3-layer CorInfoMax-B∞,+ network (averaged over n = 10 runs associated with the
corresponding ± std envelopes) for (a) MNIST, (b) CIFAR10, and (c) CIFAR100 datasets.
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J.6 Two layer CorInfoMax-B1,+ network

J.6.1 Network architecture

Figure 9 provides a depiction of a CorInfoMax network with a single hidden layer. In this instance,
both the hidden and output layers have the same constraint set P = B1,+. Relative to the CorInfoMax-
B∞,+ network structure in Figure 3, this network contains additional interneurons, namely q(1) and
q(2) to impose sparsity constraint on hidden and output layer networks.

Figure 9: Two layer correlative information maximization based neural network with non-negative
sparsity constraint: ∥r(l)∥1 ≤ 1, and r(l) ≽ 0, l = 1, 2. Interneurons with activations q(1) and q(2)

are to impose ℓ1−norm constraints for both layers.

J.6.2 Hyperparameters

Table 6: Hyperparameters used to train two layers CorInfoMax-B1,+ network. (In the row stating the
lr decay, ep. and O/W means epoch and otherwise, respectively.)

Hyperparameter MNIST FashionMNIST CIFAR10

Batch size 20 20 20
Architecture [784, 500, 10] [784, 500, 10] [3072, 1000, 10]
Tfree 20 20 30
Tnudged 4 10 10
µff [1.0, 0.7] [0.35, 0.23] [0.095, 0.075]
µfb [−, 0.12] [−, 0.06] [−, 0.05]
λr 1− 10−5 1− 10−5 1− 10−5

ϵk 0.15 ∀k 0.15 ∀k 0.15 ∀k
β′ 1.0 1.0 1.0
glk 0.5 0.2 0.1
µu 0.05 max{ 0.045

s×10−2+1 , 10
−3} max{ 0.025

s×10−2+1 , 10
−3}

µa [1e− 6, 0.01] [1e− 6, 0.01] [1e− 5, 0.01]

lr decay
{

0.95 ep. < 15
0.9 O/W.

{
0.95 ep. < 11
0.9 O/W.

{
0.95 ep. < 15
0.9 O/W.
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J.6.3 Test accuracy results

Figure 10 reports the test accuracy performance of CorInfoMax-B1,+ network with single hidden layer
as a function of training epochs for the MNIST, FashionMNIST, and CIFAR10 image classification
tasks.
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Figure 10: Test accuracy convergence of CorInfoMax-B1,+ network with single hidden layer as a
function of epochs (averaged over n = 10 runs associated with the corresponding ± std envelopes)
for the (a) MNIST dataset, (b) FashionMNIST dataset, and (c) CIFAR10 dataset.

J.6.4 Angle measurement results

The angle measurements between the feedforward and feedback weights demonstrated in Figure 11
confirm the typical asymmetry between these weights.
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Figure 11: The angle between the feedforward and the transpose of the feedback weights between
hidden and output layers (averaged over n = 10 runs associated with the corresponding ± std
envelopes) as a function of weight update iterations for CorInfoMax-B1,+.

J.7 Compute sources

All the simulations are carried out in an HPC cluster using either a single Tesla T4 or a single Tesla
V100 GPU. Although the simulation times are dependent on the memory utilization and number of
CPUs, the following list declares the approximate training periods for our experiments:

• One epoch training of CorInfoMax-B∞,+ networks with single hidden layer on MNIST, Fashion
MNIST, and CIFAR10 datasets using batch size 20 takes approximately 1-2 minutes,

• One epoch training of CorInfoMax-B∞,+ network with two hidden layers on CIFAR10 dataset
using batch size 20 takes approximately 2-3 minutes,

• One epoch training of CorInfoMax-B∞,+ network with two hidden layers on CIFAR100 dataset
using batch size 20 takes approximately 3-4 minutes,

• One epoch training of CorInfoMax-B1,+ network with single hidden layer on MNIST, Fashion
MNIST, and CIFAR10 datasets using batch size 20 takes approximately 1-2 minutes.
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K Ablation studies: the effect of hyperparameters

In this section, we examine the influence of various hyperparameters on the performance of our
proposed framework. To achieve this, we conducted a series of simulations over a selected grid of
parameters. The outcomes, in terms of training and test accuracy, from these grid-based experiments
are detailed here.

K.1 Neural dynamic’s learning rate and leakage conductance glk

Table 7 presents the effect of the neural dynamic’s learning rate and the value of glk on the training
and test accuracies for CorInfoMax-B∞,+ network with single hidden layer on the MNIST image
classification task. We observe fairly stable performance over the selected range of values.

Table 7: Train and test accuracies (mean ± standard deviation of n = 10 runs) with respect to
the combination of neural dynamic’s learning rate and glk for the MNIST simulations with 2-layer
CorInfoMax-B∞,+ network. The other hyperparameters are as specified in Table 3.

µu glk Train accuracy Test accuracy

max{ 0.05
s×10−2+1 , 10

−3} 0.5 98.915± 0.06 97.613± 0.11

max{ 0.05
s×10−2+1 , 10

−3} 0.2 98.919± 0.04 97.610± 0.10
0.05 0.5 98.930± 0.05 97.622± 0.12
0.05 0.2 98.929± 0.04 97.622± 0.10

Similarly, Table 8 demonstrates the impression of the learning rate for neural dynamics and the
leakage conductance glk for CorInfoMax-B1,+ with single hidden layer. We note that the training
and test accuracy results in the first row of Table 8 is low with high variance. This is due to the fact
that one out of ten runs has diverged after epoch 35 for this hyperparameter combination.

Table 8: Train and test accuracies (mean ± standard deviation of n = 10 runs) with respect to
the combination of neural dynamic’s learning rate and glk for the MNIST simulations with 2-layer
CorInfoMax-B1,+ network. The other hyperparameters are as specified in Table 6.

µu glk Train accuracy Test accuracy

max{ 0.05
s×10−2+1 , 10

−3} 0.5 89.793± 28.1 88.891± 27.79

max{ 0.05
s×10−2+1 , 10

−3} 0.2 98.634± 0.13 97.634± 0.12
0.05 0.5 98.698± 0.06 97.711± 0.10
0.05 0.2 98.695± 0.05 97.724± 0.08
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K.2 Learning rates for synapses and network dynamics

Table 9 reports performance variation for different choices of neural dynamic and synaptic learning
rates for CorInfoMax-B∞,+ with single hidden layer on the Fashion MNIST classification task.
Better performance is achieved for relatively higher feedforward synapse learning rates and relatively
smaller feedback synapse learning rates.

Table 9: Train and test accuracies (mean ± standard deviation of n = 10 runs) with respect to the
combination of feedforward and feedback learning rates, and neural dynamic’s learning rate for the
Fashion MNIST simulations with 2-layer CorInfoMax-B∞,+ network. The other hyperparameters
are as specified in Table 3.

µff µfb µu Train accuracy Test accuracy

[0.3, 0.22] [−, 0.07] max{ 0.07
s×10−2+1 , 10

−3} 91.468± 0.22 88.138± 0.28

[0.3, 0.22] [−, 0.07] max{ 0.05
s×10−2+1 , 10

−3} 91.230± 0.11 88.140± 0.16

[0.25, 0.15] [−, 0.09] max{ 0.07
s×10−2+1 , 10

−3} 89.961± 2.79 87.215± 2.37

[0.25, 0.15] [−, 0.09] max{ 0.05
s×10−2+1 , 10

−3} 90.530± 0.12 87.770± 0.23

K.3 Forgetting factor and learning rates

Table 10 shows the impact of forgetting factor λr together with synaptic learning rates for CorInfoMax-
B∞,+ with single hidden layer on the CIFAR10 classification accuracy. Overall, a slightly improved
performance is observed when using relatively higher values of µff and relatively smaller values of
µfb.

Table 10: Train and test accuracies (mean ± standard deviation of n = 10 runs) with respect to the
combination of feedforward and feedback learning rates, and λr for the CIFAR10 simulations with
2-layer CorInfoMax-B∞,+ network. The other hyperparameters are as specified in Table 3.

µff µfb λr Train accuracy Test accuracy

[0.08, 0.04] [−, 0.04] 1− 10−5 64.841± 0.17 51.732± 0.34
[0.07, 0.03] [−, 0.05] 1− 10−5 62.427± 0.11 51.065± 0.37
[0.08, 0.04] [−, 0.04] 1− 5× 10−5 64.848± 0.16 51.856± 0.33
[0.07, 0.03] [−, 0.05] 1− 5× 10−5 62.456± 0.18 51.066± 0.32

Likewise, Table 11 illustrates the effect of the variations on the same set of hyperparameters for
CorInfoMax-B1,+ with a single hidden layer for CIFAR10 classification task. Comparatively, the
resulting performances exhibit a moderate level of stability when compared to the CorInfoMax-B∞,+

results presented in Table 10.

Table 11: Train and test accuracies (mean ± standard deviation of n = 10 runs) with respect to the
combination of feedforward and feedback learning rates, and λr for the CIFAR10 simulations with
2-layer CorInfoMax-B1,+ network. The other hyperparameters are as specified in Table 6.

µff µfb λr Train accuracy Test accuracy

[0.09, 0.07] [−, 0.045] 1− 10−5 63.005± 0.48 51.047± 0.40
[0.095, 0.075] [−, 0.05] 1− 10−5 63.719± 0.56 51.188± 0.36
[0.09, 0.07] [−, 0.045] 1− 5× 10−5 63.003± 0.54 51.062± 0.32
[0.095, 0.075] [−, 0.05] 1− 5× 10−5 63.716± 0.53 51.106± 0.38
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K.4 Learning rate decay, free phase iterations, synaptic learning rates

Table 12 investigates the influence of learning rate decay, the number of free phase iterations, and
synaptic learning rates on classification accuracy for CorInfoMax-B∞,+ with two hidden layers on
the CIFAR100 classification task. The best train and test results are acquired by utilizing higher
values of µff and µfb, along with implementing a learning rate decay during the initial epochs.

Table 12: Train and test accuracies (mean ± standard deviation of n = 10 runs) with respect to the
combination of feedforward and feedback learning rates, learning rate decay, and number of iterations
for the free phase (Tfree) for the CIFAR100 simulations with 3-layer CorInfoMax-B∞,+ network.
The other hyperparameters are as specified in Table 4. (In the row stating the lr decay, ep. and O/W
means epoch and otherwise, respectively.)

µff µfb lr decay Tfree Train acc. Test acc.

Top-1/5 Top-1/5

[0.16, 0.13, 0.08] [−, 0.06, 0.04]

{
1.0 ep. < 15
0.9 O/W.

50 23.9/40.9 19.1/36.4

[0.16, 0.13, 0.08] [−, 0.06, 0.04]

{
0.99 ep. < 20
0.9 O/W.

50 26.0/42.8 20.2/37.6

[0.16, 0.13, 0.08] [−, 0.06, 0.04]

{
1.0 ep. < 15
0.9 O/W.

60 23.9/41.0 19.1/36.5

[0.18, 0.15, 0.09] [−, 0.08, 0.06]

{
0.99 ep. < 20
0.9 O/W.

50 27.7/43.5 20.8/37.9

K.5 Larger variations on forward mapping learning rate and neural dynamic learning rate

To assess the impact of larger variations in certain hyperparameters on performance, we conducted
two additional ablation studies using both the MNIST and CIFAR10 datasets. These experiments
were conducted using a two-layered CorInfoMax-B∞,+ network. Specifically, we explored variations
in the selection of the learning rate for the forward mapping (µff ) and the initial learning rate for
neural dynamics (µu[1]).

Figure 12a presents the test accuracy curves for the MNIST classification task, showcasing different
selections of µff averaged over five runs, with standard deviation envelopes (±std). The remaining
hyperparameters of the CorInfoMax-B∞,+ network were kept constant at the values reported in Table
3, including the learning rate decay. It is important to note that the specific value of µff = [1.0, 0.7]
corresponds to the value reported in Table 3 for our experiments. Our observations indicate that as
the forward mapping learning rate approaches this reported value, the accuracy curve exhibits gradual
improvement. Conversely, for relatively small values of µff , the resulting accuracy is lower and
exhibits higher variance.

Figure 12b presents the same experiment conducted for the CIFAR10 classification task. Once again,
we observe that as µff approaches the value reported in Table 3, the accuracy improves.

In addition, we conducted experiments to investigate the impact of varying the initial learning rate for
neural dynamics, denoted as µu[1]. Figure 13 presents test accuracy curves for the MNIST classifica-
tion task with two-layered CorInfoMax-B∞,+, which were obtained by averaging results from five
runs and displaying standard deviation envelopes (±std). The remaining hyperparameters were held
constant at the values specified in Table 3. In Table 3, we define µu[s] as max{ µu[1]

s×10−2+1 , 10
−3}.

Consequently, for this experiment, we applied the same decay rule to all selected values of µu[1].
Notably, our results indicate that µu[1] values of 0.05 or 0.075 consistently yield reliable accuracy
outcomes, while other values fail to provide dependable accuracy estimates.
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Figure 12: Ablation study on µff variations for two-layered CorInfoMax-B∞,+ networks. (a)
Convergence of test accuracy across different selections of µff for the MNIST classification task
(averaged over n = 5 runs associated with the corresponding ± std envelopes). (b) Convergence of
test accuracy across different selections of µff for the CIFAR-10 classification task (averaged over
n = 5 runs associated with the corresponding ± std envelopes).
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Figure 13: Ablation study on µu[1] variations: Test accuracy curves in a two-layered CorInfoMax-
B∞,+ network for MNIST classification (averaged over n = 5 runs associated with the corresponding
± std envelopes). Convergence to approximately 97.5% accuracy is observed for µu[1] values of
0.05 and 0.075.

Similarly, we conducted the same experiment using a two-layered CorInfoMax-B∞,+ network for the
CIFAR10 classification task. Figure 14 illustrates the test accuracy curves obtained for the CIFAR10
classification task, representing the average results of five runs with standard deviation envelopes
(±std). The remaining hyperparameters were held constant at the values specified in Table 3. It is
worth noting that, for the CIFAR10 task, we did not implement decay rule for the neural dynamics
learning rate, i.e., µu[s] = µu[1] ∀s. Figure 14 demonstrates that our method achieves convergence
to approximately 52% accuracy when µu[1] falls within the range of 0.05 to 0.1. However, when
µu[1] is set to 0.015, the accuracy slightly decreases, converging to around 49.5%. Notably, relatively
higher values of µu[1], such as 0.15 and 0.3, lead to divergence
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Figure 14: Ablation study on µu[1] variations: Test accuracy curves in a two-layered CorInfoMax-
B∞,+ network for CIFAR10 classification (averaged over n = 5 runs associated with the correspond-
ing ± std envelopes). Convergence to approximately 52% accuracy is observed for µu[1] values
between 0.05 and 0.1.
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