3 research outputs found

    A European spectrum of pharmacogenomic biomarkers: Implications for clinical pharmacogenomics

    Get PDF
    Pharmacogenomics aims to correlate inter-individual differences of drug efficacy and/or toxicity with the underlying genetic composition, particularly in genes encoding for protein factors and enzymes involved in drug metabolism and transport. In several European populations, particularly in countries with lower income, information related to the prevalence of pharmacogenomic biomarkers is incomplete or lacking. Here, we have implemented the microattribution approach to assess the pharmacogenomic biomarkers allelic spectrum in 18 European populations, mostly from developing European countries, by analyzing 1,931 pharmacogenomics biomarkers in 231 genes. Our data show significant interpopulation pharmacogenomic biomarker allele frequency differences, particularly in 7 clinically actionable pharmacogenomic biomarkers in 7 European populations, affecting drug efficacy and/or toxicity of 51 medication treatment modalities. These data also reflect on the differences observed in the prevalence of high-risk genotypes in these populations, as far as common markers in the CYP2C9, CYP2C19, CYP3A5, VKORC1, SLCO1B1 and TPMT pharmacogenes are concerned. Also, our data demonstrate notable differences in predicted genotype-based warfarin dosing among these populations. Our findings can be exploited not only to develop guidelines for medical prioritization, but most importantly to facilitate integration of pharmacogenomics and to support pre-emptive pharmacogenomic testing. This may subsequently contribute towards significant cost-savings in the overall healthcare expenditure in the participating countries, where pharmacogenomics implementation proves to be cost-effective

    The role of CYP2D6 and ABCB1 pharmacogenetics in drug-naïve patients with first-episode schizophrenia treated with risperidone

    Get PDF
    PURPOSE: To evaluate the role of cytochrome 450 2D6 (CYP2D6) and ABCB1 variants on plasma risperidone concentrations and treatment response in 83 drug-naive patients experiencing a first episode of psychosis. ----- METHODS: All patients were treated with risperidone for 8 weeks. The CYP2D6 genotyping was performed by allele-specific PCR-restriction fragment length polymorphism analysis (for alleles *3,*4,*6) and long-distance PCR (for duplications and allele *5), while real-time PCR analysis was used for the ABCB1 G2677T/A and C3435T variants. Plasma concentrations of risperidone and 9-OH risperidone were measured by high-performance liquid chromatography. ----- RESULTS: The number of patients with the CYP2D6 wild type (wt)/wt, wt/mutation (mut) and mut/mut genotype was 43, 32 and 8, respectively. The number of patients with the ABCB1 2677G/G, G/T and T/T variants was 29, 42 and 12, respectively; those with the 3435CC, C/T and T/T variants was 25, 37 and 21, respectively. The CYP2D6 genotype had a strong effect on the steady-state dose-corrected plasma levels (C/D) of risperidone, its 9-OH metabolite and the active moiety, while the ABCB1 2677 T/T and 3435 T/T genotypes has similarly strong effects on the active moiety C/D. The CYP2D6 poor metabolizers had a significantly higher risperidone C/D and active moiety C/D and lower 9-OH risperidone C/D. The ABCB1 3435 T allele and the ABCB1 2667 T-3435 T haplotype carriers were more frequent among subjects without extrapyramidal syndromes. Patients showed significant improvements in positive and general symptoms, but not in negative symptoms. These changes were not related to variations in genetic and drug concentration data. ----- CONCLUSION: Our findings suggest that CYP2D6 and ABCB1 G2677T and C3435T may be useful determinants of risperidone plasma concentrations, but the clinical implications of these associations in relation to treatment response and side-effects remain unclear

    MDR1 polymorphisms are associated with inflammatory bowel disease in a cohort of Croatian IBD patients

    Get PDF
    BACKGROUND: Inflammatory bowel diseases (IBD) are chronic diseases of unknown etiology and pathogenesis in which genetic factors contribute to development of disease. MDR1/ABCB1 is an interesting candidate gene for IBD. The role of two single nucleotide polymorphisms, C3435T and G2677T remains unclear due to contradictory results of current studies. Thus, the aims of this research were to investigate the association of MDR1 polymorphisms, C3435T and G2677T, and IBD. ----- METHODS: A total of 310 IBD patients, 199 Crohn's disease (CD) patients and 109 ulcerative colitis (UC) patients, and 120 healthy controls were included in the study. All subjects were genotyped for G2677T/A and C3435T polymorphism using RT-PCR. In IBD patients, review of medical records was performed and patients were phenotyped according to the Montreal classification. ----- RESULTS: Significantly higher frequency of 2677T allele (p=0.05; OR 1.46, 95% CI (1.0-2.14)) and of the 3435TT genotype was observed among UC patients compared to controls (p=0.02; OR 2.12; 95% CI (1.11-4.03). Heterozygous carriers for C3435T were significantly less likely to have CD (p=0.02; OR 0.58, 95% CI (0.36-0.91)). Haplotype analysis revealed that carriers of 3435T/2677T haplotype had a significantly higher risk of having UC (p=0.02; OR 1.55; 95% CI (1.06-2.28)). ----- CONCLUSION: MDR1 polymorphisms are associated with both CD and UC with a stronger association with UC
    corecore