25 research outputs found

    Harnessing radiotherapy-induced NK-cell activity by combining DNA damage-response inhibition and immune checkpoint blockade.

    Full text link
    BackgroundDespite therapeutic gains from immune checkpoint inhibitors (ICI) in many tumor types, new strategies are needed to extend treatment benefits, especially in patients failing to mount effective antitumor T-cell responses. Radiation and drug therapies can profoundly affect the tumor immune microenvironment. Here, we aimed to identify immunotherapies to increase the antitumor response conferred by combined ataxia telangiectasia and Rad3-related kinase inhibition and radiotherapy.MethodsUsing the human papillomavirus (HPV)-negative murine oral squamous cell carcinoma model, MOC2, we assessed the nature of the antitumor response following ataxia telangiectasia and Rad3-related inhibitor (ATRi)/radiotherapy (RT) by performing RNA sequencing and detailed flow cytometry analyses in tumors. The benefit of immunotherapies based on T cell immunoreceptor with Ig and ITIM domains (TIGIT) and Programmed cell death protein 1 (PD-1) immune checkpoint blockade following ATRi/RT treatment was assessed in the MOC2 model and confirmed in another HPV-negative murine oral squamous cell carcinoma model called SCC7. Finally, immune profiling was performed by flow cytometry on blood samples in patients with head and neck squamous cell carcinoma enrolled in the PATRIOT clinical trial of combined ATRi/RT.ResultsATRi enhances radiotherapy-induced inflammation in the tumor microenvironment, with natural killer (NK) cells playing a central role in maximizing treatment efficacy. We demonstrated that antitumor activity of NK cells can be further boosted with ICI targeting TIGIT and PD-1. Analyses of clinical samples from patients receiving ATRi (ceralasertib) confirm the translational potential of our preclinical studies.ConclusionThis work delineates a previously unrecognized role for NK cells in the antitumor immune response to radiotherapy that can be augmented by small-molecule DNA damage-response inhibitors and immune checkpoint blockade

    Production of Ultra-Cold-Neutrons in Solid \alpha-Oxygen

    Full text link
    Our recent neutron scattering measurements of phonons and magnons in solid \alpha-oxygen have led us to a new understanding of the production mechanismen of ultra-cold-neutrons (UCN) in this super-thermal converter. The UCN production in solid \alpha-oxygen is dominated by the excitation of phonons. The contribution of magnons to UCN production becomes only slightly important above E >10 meV and at E >4 meV. Solid \alpha-oxygen is in comparison to solid deuterium less effcient in the down-scattering of thermal or cold neutrons into the UCN energy regime.Comment: 4 pages, 5 figuer

    Combining BRAF inhibition with oncolytic herpes simplex virus enhances the immune-mediated antitumor therapy of BRAF-mutant thyroid cancer.

    Get PDF
    BACKGROUND: The aggressive clinical behavior of poorly differentiated and anaplastic thyroid cancers (PDTC and ATC) has proven challenging to treat, and survival beyond a few months from diagnosis is rare. Although 30%-60% of these tumors contain mutations in the BRAF gene, inhibitors designed specifically to target oncogenic BRAF have shown limited and only short-lasting therapeutic benefits as single agents, thus highlighting the need for improved treatment strategies, including novel combinations. METHODS: Using a BRAFV600E-driven mouse model of ATC, we investigated the therapeutic efficacy of the combination of BRAF inhibition and oncolytic herpes simplex virus (oHSV). Analyses of samples from tumor-bearing mice were performed to immunologically characterize the effects of different treatments. These immune data were used to inform the incorporation of immune checkpoint inhibitors into triple combination therapies. RESULTS: We characterized the immune landscape in vivo following BRAF inhibitor treatment and detected only modest immune changes. We, therefore, hypothesized that the addition of oncolytic virotherapy to BRAF inhibition in thyroid cancer would create a more favorable tumor immune microenvironment, boost the inflammatory status of tumors and improve BRAF inhibitor therapy. First, we showed that thyroid cancer cells were susceptible to infection with oHSV and that this process was associated with activation of the immune tumor microenvironment in vivo. Next, we showed improved therapeutic responses when combining oHSV and BRAF inhibition in vivo, although no synergistic effects were seen in vitro, further confirming that the dominant effect of oHSV in this context was likely immune-mediated. Importantly, both gene and protein expression data revealed an increase in activation of T cells and natural killer (NK) cells in the tumor in combination-treated samples. The benefit of combination oHSV and BRAF inhibitor therapy was abrogated when T cells or NK cells were depleted in vivo. In addition, we showed upregulation of PD-L1 and CTLA-4 following combined treatment and demonstrated that blockade of the PD-1/PD-L1 axis or CTLA-4 further improved combination therapy. CONCLUSIONS: The combination of oHSV and BRAF inhibition significantly improved survival in a mouse model of ATC by enhancing immune-mediated antitumor effects, and triple combination therapies, including either PD-1 or CTLA-4 blockade, further improved therapy

    ATR Inhibition Potentiates the Radiation-induced Inflammatory Tumor Microenvironment.

    Get PDF
    Purpose ATR inhibitors (ATRi) are in early phase clinical trials and have been shown to sensitize to chemotherapy and radiotherapy preclinically. Limited data have been published about the effect of these drugs on the tumor microenvironment.Experimental Design: We used an immunocompetent mouse model of HPV-driven malignancies to investigate the ATR inhibitor AZD6738 in combination with fractionated radiation (RT). Gene expression analysis and flow cytometry were performed posttherapy.Results Significant radiosensitization to RT by ATRi was observed alongside a marked increase in immune cell infiltration. We identified increased numbers of CD3+ and NK cells, but most of this infiltrate was composed of myeloid cells. ATRi plus radiation produced a gene expression signature matching a type I/II IFN response, with upregulation of genes playing a role in nucleic acid sensing. Increased MHC I levels were observed on tumor cells, with transcript-level data indicating increased antigen processing and presentation within the tumor. Significant modulation of cytokine gene expression (particularly CCL2, CCL5, and CXCL10) was found in vivo, with in vitro data indicating CCL3, CCL5, and CXCL10 are produced from tumor cells after ATRi + RT.Conclusions We show that DNA damage by ATRi and RT leads to an IFN response through activation of nucleic acid-sensing pathways. This triggers increased antigen presentation and innate immune cell infiltration. Further understanding of the effect of this combination on the immune response may allow modulation of these effects to maximize tumor control through antitumor immunity

    In vitro propagation of white oil-bearing rose (Rosa alba L.)

    No full text
    Abstract. The influence of major factors such as explant sterilization, plant growth regulators in the multiplication and rooting media and the genotype on the in vitro multiplication of White Oil-Bearing Rose (Rosa alba L.) was studied. Explants used in the experiment were 1.0 to 1.5 cm long nodal segments from specially cultivated mother plants. The combination of two disinfectants in the following order: 0.2% HgCl2 solution for 3 min followed by treatment with 0.5% NaClO solution for 20 min and 0.25% NaClO for 30 min was determined as the most suitable sterilization scheme. The best results of multiplication were obtained in basic MS medium with added BAP in concentration of 0.5 to 3.0 mg/L. The analysis of the variance reveals that the genotype, media variants and interactions between them have a statistically significant influence on the variation of the total number of induced adventive shoots. The highest percentage of successfully rooted young plants (97.5% on average for both genotypes) was obtained in ex vitro conditions by direct rooting in a soil mixture

    Add and Go: FRET Acceptor for Live-Cell Measurements Modulated by Externally Provided Ligand

    No full text
    A substantial number of genetically encoded fluorescent sensors rely on the changes in FRET efficiency between fluorescent cores, measured in ratiometric mode, with acceptor photobleaching or by changes in fluorescence lifetime. We report on a modulated FRET acceptor allowing for simplified one-channel FRET measurement based on a previously reported fluorogen-activating protein, DiB1. Upon the addition of the cell-permeable chromophore, the fluorescence of the donor-fluorescent protein mNeonGreen decreases, allowing for a simplified one-channel FRET measurement. The reported chemically modulated FRET acceptor is compatible with live-cell experiments and allows for prolonged time-lapse experiments with dynamic energy transfer evaluation

    Add and Go: FRET Acceptor for Live-Cell Measurements Modulated by Externally Provided Ligand

    No full text
    A substantial number of genetically encoded fluorescent sensors rely on the changes in FRET efficiency between fluorescent cores, measured in ratiometric mode, with acceptor photobleaching or by changes in fluorescence lifetime. We report on a modulated FRET acceptor allowing for simplified one-channel FRET measurement based on a previously reported fluorogen-activating protein, DiB1. Upon the addition of the cell-permeable chromophore, the fluorescence of the donor-fluorescent protein mNeonGreen decreases, allowing for a simplified one-channel FRET measurement. The reported chemically modulated FRET acceptor is compatible with live-cell experiments and allows for prolonged time-lapse experiments with dynamic energy transfer evaluation

    Red-Shifted Aminated Derivatives of GFP Chromophore for Live-Cell Protein Labeling with Lipocalins

    No full text
    Fluorogens are an attractive type of dye for imaging applications, eliminating time-consuming washout steps from staining protocols. With just a handful of reported fluorogen-protein pairs, mostly in the green region of spectra, there is a need for the expansion of their spectral range. Still, the origins of solvatochromic and fluorogenic properties of the chromophores suitable for live-cell imaging are poorly understood. Here we report on the synthesis and labeling applications of novel red-shifted fluorogenic cell-permeable green fluorescent protein (GFP) chromophore analogs

    Yellow and Orange Fluorescent Proteins with Tryptophan-based Chromophores

    No full text
    Rapid development of new microscopy techniques exposed the need for genetically encoded fluorescent tags with special properties. Recent works demonstrated the potential of fluorescent proteins with tryptophan-based chromophores. We applied rational design and random mutagenesis to the monomeric red fluorescent protein FusionRed and found two groups of mutants carrying a tryptophan-based chromophore: with yellow (535 nm) or orange (565 nm) emission. On the basis of the properties of proteins, a model synthetic chromophore, and a computational modeling, we concluded that the presence of a ketone-containing chromophore in different isomeric forms can explain the observed yellow and orange phenotypes
    corecore