22 research outputs found

    Grassmann Manifold Based State Analysis Method of Traffic Surveillance Video

    No full text
    For a contemporary intelligent transport system, congestion state analysis of traffic surveillance video (TSV) is one of the most crucial and intricate research topics because of the rapid development of transportation systems, the sustained growth of surveillance facilities on road, which lead to massive traffic flow data, and the inherent characteristics of our analysis target. Traditional methods on feature extractions are usually operated on Euclidean space in general, which are not accurate for high-dimensional TSV data analysis. This paper proposes a Grassmann manifold based neural network model to analysis TSV data , by mapping the video data from high dimensional Euclidean space to Grassmann manifold space, and considering the inner relation among adjacent cameras. The accuracy of the traffic congestion is improved, compared with several traditional methods. Experimental results are conducted to validate the accuracy of our method and to investigate the effects of different factors on performance

    Spatio-Temporal Memory Attention for Image Captioning

    No full text

    Heparin-Binding Protein: A Novel Biomarker Linking Four Different Cardiovascular Diseases

    No full text
    Cardiovascular diseases are an important group of diseases that seriously affect quality of life. Thus, their treatment warrants further study. Heparin-binding protein (HBP) is a granulocyte protein derived from neutrophils. When an infection occurs, neutrophils release HBP, which can lead to elevated HBP levels in the blood. Therefore, HBP family members are said to be important indicators of infection. However, basic evidence is still lacking to confirm the possible relationship between HBP and cardiovascular diseases. Using bioinformatics methods, we investigated the role of the HBP network in normal hearts and hearts from patients with cardiovascular disease. First, we used the Open Targets database to obtain a list of HBP-encoding mRNAs related to atherosclerosis, myocarditis, myocardial infarction, and myocardial ischemia. Then, we constructed an HBP gene interaction network map using STRING. Clustering coefficients were calculated using Cytoscape, and MCODE was used for subnet analysis. Finally, the proposed interstitial network of HBPs was established and analyzed by Metascape enrichment analysis of the relevant signaling pathways. The aggregation coefficient of the HBP interaction network was higher among hearts with the four cardiovascular diseases, atherosclerosis (0.496), myocarditis (0.631), myocardial infarction (0.532), and myocardial ischemia (0.551), than in normal hearts. Metascape analysis showed that “NABA_MATRISOME_ASSOCIATED” was a typical pathway with the highest p value associated with epithelialization in all four diseases. Moreover, a large number of important HBPs were identified that may be significant for the treatment of these diseases. Therefore, HBPs do have a highly atopic connectivity network in cardiovascular diseases, and specific HBPs or signaling pathways may be used as targets for the development of new treatments for cardiovascular diseases

    Comparison of the Indicators of Psychological Stress in the Population of Hubei Province and Non-Endemic Provinces in China During Two Weeks During the Coronavirus Disease 2019 (COVID-19) Outbreak in February 2020

    No full text
    BACKGROUND: During February 2020, the coronavirus disease 2019 (COVID-19) epidemic in Hubei Province, China, was at its height, requiring isolation of the population. This study aimed to compare the emotional state, somatic responses, sleep quality, and behavior of people in Hubei Province with non-endemic provinces in China during two weeks in February 2020. MATERIAL/METHODS: Questionnaires were completed by 939 individuals (357 men; 582 women), including 33 from Hubei and 906 from non-endemic provinces. The Stress Response Questionnaire (SRQ) determined the emotional state, somatic responses, and behavior. The Pittsburgh Sleep Quality Index (PSQI) was used to measure the duration of sleep and sleep quality. RESULTS: There were 939 study participants, aged 18–24 years (35.89%) and 25–39 years (35.57%); 65.92% were university students. During a two week period in February 2020, the emotional state and behavior of participants in Hubei improved, but the quality of sleep did not. Health workers and business people became increasingly anxious, but other professionals became less anxious. The data showed that most people in Hubei Province developed a more positive attitude regarding their risk of infection and the chances of surviving the COVID-19 epidemic. CONCLUSIONS: During a two-week period, front-line health workers and people in Hubei Province became less anxious about the COVID-19 epidemic, but sleep quality did not improve. Despite public awareness, levels of anxiety exist that affect the quality of life during epidemics, including periods of population quarantine. Therefore, health education should be combined with psychological counseling for vulnerable individuals

    The Deoptimization of Rabies Virus Matrix Protein Impacts Viral Transcription and Replication

    No full text
    Rabies virus (RABV) matrix (M) protein plays several important roles during RABV infection. Although previous studies have assessed the functions of M through gene rearrangements, this interferes with the position of other viral proteins. In this study, we attenuated M expression through deoptimizing its codon usage based on codon pair bias in RABV. This strategy more objectively clarifies the role of M during virus infection. Codon-deoptimized M inhibited RABV replication during the early stages of infection, but enhanced viral titers at later stages. Codon-deoptimized M also inhibited genome synthesis at early stage of infection and increased the RABV transcription rates. Attenuated M through codon deoptimization enhanced RABV glycoprotein expression following RABV infection in neuronal cells, but had no influence on the cell-to-cell spread of RABV. In addition, codon-deoptimized M virus induced higher levels of apoptosis compared to the parental RABV. These results indicate that codon-deoptimized M increases glycoprotein expression, providing a foundation for further investigation of the role of M during RABV infection

    Rhabdovirus Infection Is Dependent on Serine/Threonine Kinase AP2-Associated Kinase 1

    No full text
    Rabies virus (RABV) causes a fatal neurological disease in both humans and animals. Understanding the mechanism of RABV infection is vital for prevention and therapy of virulent rabies infection. Our previous proteomics analysis based on isobaric tags for relative and absolute quantitation to identify factors revealed that RABV infection enhanced AP-2-associated protein kinase 1 (AAK1) in N2a cells. In this study, to further confirm the role of AAK1, we showed that RABV infection increased the transcription and expression of AAK1 in N2a cells. AAK1 knockdown significantly decreased RABV infection in both N2a and BHK-21 cells. AAK1 knockout inhibited RABV infection in N2a cells. Furthermore, inhibition of AAK1 kinase activity using sunitinib decreased RABV infection. However, AAK1 overexpression did not change RABV infection in vitro. Therapeutic administration of sunitinib did not significantly improve the survival rate of mice following lethal RABV challenge. In addition, AAK1 knockdown decreased infection in N2a cells by vesicular stomatitis virus, which is another rhabdovirus. These results indicate that rhabdovirus infection is dependent on AAK1 and inhibition of AAK1 is a potential strategy for the prevention and therapy of rabies

    TRIM25 Suppresses Rabies Virus Fixed HEP-Flury Strain Production by Activating RIG-1-Mediated Type I Interferons

    No full text
    Rabies remains a great threat to public health worldwide. So far, the mechanism of rabies virus (RABV) infection is not fully understood, and there is no effective treatment for rabies. Identifying more host restriction factors of RABV will spur the development of novel therapeutic interventions against rabies. Accumulating studies suggest that tripartite motif-containing (TRIM) proteins have great effects on virus replication. TRIMs control the antiviral responses through either direct interaction with viral proteins or indirect regulation of innate immune signaling molecules in the host. The role of TRIM25 in rabies virus (RABV) infection is poorly understood. Using next-generation sequencing, we found that TRIM25 is upregulated during HEP-Flury infection. Knockdown of TRIM25 enhances HEP-Flury production, while overexpression of TRIM25 suppresses HEP-Flury replication. Knockdown of interferon α and interferon β weakens the anti-RABV response induced by TRIM25 overexpression, and potentiates RABV production. Furthermore, we found that TRIM25 regulates type-I interferon response by targeting retinoic acid-inducible gene I (RIG-I) during HEP-Flury infection. Knockdown of RIG-I weakens the anti-HEP-Flury response induced by TRIM25 overexpression, indicating that TRIM25 regulates RABV production via the RIG-I-IFN axis. In addition, we observed that TRIM25 does not directly interact with HEP-Flury structural proteins, suggesting that TRIM25 regulates HEP-Flury production indirectly. Taken together, our work identifies TRIM25 as a new host factor involved in HEP-Flury infection, which may be a potential target for the development of antiviral drugs against RABV

    Kinetic Modeling of the Anodic Degradation of Ni-EDTA Complexes: Insights into the Reaction Mechanism and Products

    No full text
    In this study, an electrochemical advanced oxidation process (EAOP) was employed to effectively degrade complexes of nickel and ethylenediaminetetraacetic acid (EDTA) present in electroless nickel plating wastewaters. Our results show that Ni-EDTA complexes can be effectively degraded by an EAOP with degradation of the complexes occurring at/near the anode surface via interaction with hydroxyl radicals generated on water splitting. Our results further show that the rate of Ni-EDTA degradation is not a function of the rate of any particular chemical reaction but, rather, is controlled by the rate of transport of Ni-EDTA to the anode surface. The oxidation of EDTA to smaller noncomplexing entities releases Ni2+, which is subsequently deposited onto the cathode as Ni0. While complete Ni-EDTA removal and Ni recovery are achieved within 2 h, the overall TOC removal by EAOP is limited, with only 50% TOC removal achieved after 2 h of treatment. The low affinity of small molecular weight EDTA degradation products (such as formic acid, glycine, oxamic acid, and acetic acid) for the anode surface limits oxidation of these compounds and overall TOC removal by the anodic oxidation process. We have developed a mathematical kinetic model that satisfactorily describes Ni-EDTA removal, Ni recovery, and TOC removal over a range of Ni and EDTA concentrations and provides a good description of the oxidation of various EDTA degradation intermediates. The mathematical model developed here, when coupled with the hydrodynamics of the electrochemical cell using a computational fluid dynamics tool, can assist in both cell design and the selection of operating parameters such that the performance of the EAOP process for Ni-EDTA degradation and TOC removal is optimized
    corecore