26 research outputs found

    Sperm DNA damage causes genomic instability in early embryonic development

    Get PDF
    Genomic instability is common in human embryos, but the underlying causes are largely unknown. Here, we examined the consequences of sperm DNA damage on the embryonic genome by single-cell whole-genome sequencing of individual blastomeres from bovine embryos produced with sperm damaged by γ-radiation. Sperm DNA damage primarily leads to fragmentation of the paternal chromosomes followed by random distribution of the chromosomal fragments over the two sister cells in the first cell division. An unexpected secondary effect of sperm DNA damage is the induction of direct unequal cleavages, which include the poorly understood heterogoneic cell divisions. As a result, chaotic mosaicism is common in embryos derived from fertilizations with damaged sperm. The mosaic aneuploidies, uniparental disomies, and de novo structural variation induced by sperm DNA damage may compromise fertility and lead to rare congenital disorders when embryos escape developmental arrest

    Mutational impact of culturing human pluripotent and adult stem cells

    Get PDF
    Genetic changes acquired during in vitro culture pose a potential risk for the successful application of stem cells in regenerative medicine. To assess mutation accumulation risks induced by culturing, we determined genetic aberrations in individual human induced pluripotent stem cells (iPS cells) and adult stem cells (ASCs) by whole genome sequencing analyses. Individual iPS cells, intestinal ASCs and liver ASCs accumulated 3.5±0.5, 7.2±1.0 and 8.4±3.6 base substitutions per population doubling, respectively. The annual in vitro mutation accumulation rate of ASCs adds up to ∼1600 base pair substitutions, which is ∼40-fold higher than the in vivo rate of ∼40 base pair substitutions per year. Mutational analysis revealed a distinct in vitro induced mutational signature that is irrespective of stem cell type and distinct from the in vivo mutational signature. This in vitro signature is characterized by C to A changes that have previously been linked to oxidative stress conditions. Additionally, we observed stem cell-specific mutational signatures and differences in transcriptional strand bias, indicating differential activity of DNA repair mechanisms between stem cell types in culture. We demonstrate that the empirically defined mutation rates, spectra, and genomic distribution enable risk assessment by modelling the accumulation of specific oncogenic mutations during typical in vitro expansion, manipulation or screening experiments using human stem cells. Taken together, we have here for the first time accurately quantified and characterized in vitro mutation accumulation in human iPS cells and ASCs in a direct comparison. These results provide insights for further optimization of culture conditions for safe in vivo utilization of these cell types for regenerative purposes

    Reconstructing single-cell karyotype alterations in colorectal cancer identifies punctuated and gradual diversification patterns

    Get PDF
    Central to tumor evolution is the generation of genetic diversity. However, the extent and patterns by which de novo karyotype alterations emerge and propagate within human tumors are not well understood, especially at single-cell resolution. Here, we present 3D Live-Seq—a protocol that integrates live-cell imaging of tumor organoid outgrowth and whole-genome sequencing of each imaged cell to reconstruct evolving tumor cell karyotypes across consecutive cell generations. Using patient-derived colorectal cancer organoids and fresh tumor biopsies, we demonstrate that karyotype alterations of varying complexity are prevalent and can arise within a few cell generations. Sub-chromosomal acentric fragments were prone to replication and collective missegregation across consecutive cell divisions. In contrast, gross genome-wide karyotype alterations were generated in a single erroneous cell division, providing support that aneuploid tumor genomes can evolve via punctuated evolution. Mapping the temporal dynamics and patterns of karyotype diversification in cancer enables reconstructions of evolutionary paths to malignant fitness

    Genomic landscape of rat strain and substrain variation

    Get PDF
    Background: Since the completion of the rat reference genome in 2003, whole-genome sequencing data from more than 40 rat strains have become available. These data represent the broad range of strains that are used in rat research including commonly used substrains. Currently, this wealth of information cannot be used to its full extent, because the variety of different variant calling algorithms employed by different groups impairs comparison between strains. In addition, all rat whole genome sequencing studies to date used an outdated reference genome for analysis (RGSC3.4 released in 2004). Results: Here we present a comprehensive, multi-sample and uniformly called set of genetic variants in 40 rat strains, including 19 substrains. We reanalyzed all primary data using a recent version of the rat reference assembly (RGSC5.0 released in 2012) and identified over 12 million genomic variants (SNVs, indels and structural variants) among the 40 strains. 28,318 SNVs are specific to individual substrains, which may be explained by introgression from other unsequenced strains and ongoing evolution by genetic drift. Substrain SNVs may have a larger predicted functional impact compared to older shared SNVs. Conclusions: In summary we present a comprehensive catalog of uniformly analyzed genetic variants among 40 widely used rat inbred strains based on the RGSC5.0 assembly. This represents a valuable resource, which will facilitate rat functional genomic research. In line with previous observations, our genome-wide analyses do not show evidence for contribution of multiple ancestral founder rat subspecies to the currently used rat inbred strains, as is the case for mouse. In addition, we find that the degree of substrain variation is highly variable between strains, which is of importance for the correct interpretation of experimental data from different labs

    Deficiency of nucleotide excision repair is associated with mutational signature observed in cancer

    Get PDF
    Nucleotide excision repair (NER) is one of the main DNA repair pathways that protect cells against genomic damage. Disruption of this pathway can contribute to the development of cancer and accelerate aging. Mutational characteristics of NER-deficiency may reveal important diagnostic opportunities, as tumors deficient in NER are more sensitive to certain treatments. Here, we analyzed the genome-wide somatic mutational profiles of adult stem cells (ASCs) from NER-deficient Ercc1−/Δ mice. Our results indicate that NER-deficiency increases the base substitution load twofold in liver but not in small intestinal ASCs, which coincides with the tissue-specific aging pathology observed in these mice. Moreover, NER-deficient ASCs of both tissues show an increased contribution of Signature 8 mutations, which is a mutational pattern with unknown etiology that is recurrently observed in various cancer types. The scattered genomic distribution of the base substitutions indicates that deficiency of global-genome NER (GG-NER) underlies the observed mutational consequences. In line with this, we observe increased Signature 8 mutations in a GG-NER-deficient human organoid culture, in which XPC was deleted using CRISPR-Cas9 gene-editing. Furthermore, genomes of NER-deficient breast tumors show an increased contribution of Signature 8 mutations compared with NER-proficient tumors. Elevated levels of Signature 8 mutations could therefore contribute to a predictor of NER-deficiency based on a patient's mutational profile

    Prioritization of genes driving congenital phenotypes of patients with de novo genomic structural variants

    Get PDF
    Background:Genomic structural variants (SVs) can affect many genes and regulatory elements. Therefore, the molecular mechanisms driving the phenotypes of patients carrying de novo SVs are frequently unknown. Methods:We applied a combination of systematic experimental and bioinformatic methods to improve the molecular diagnosis of 39 patients with multiple congenital abnormalities and/or intellectual disability harboring apparent de novo SVs, most with an inconclusive diagnosis after regular genetic testing. Results: In 7 of these cases (18%), whole-genome sequencing analysis revealed disease-relevant complexities of the SVs missed in routine microarray-based analyses. We developed a computational tool to predict the effects on genes directly affected by SVs and on genes indirectly affected likely due to the changes in chromatin organization and impact on regulatory mechanisms. By combining these functional predictions with extensive phenotype information, candidate driver genes were identified in 16/39 (41%) patients. In 8 cases, evidence was found for the involvement of multiple candidate drivers contributing to different parts of the phenotypes. Subsequently, we applied this computational method to two cohorts containing a total of 379 patients with previously detected and classified de novo SVs and identified candidate driver genes in 189 cases (50%), including 40 cases whose SVs were previously not classified as pathogenic. Pathogenic position effects were predicted in 28% of all studied cases with balanced SVs and in 11% of the cases with copy number variants. Conclusions:These results demonstrate an integrated computational and experimental approach to predict driver genes based on analyses of WGS data with phenotype association and chromatin organization datasets. These analyses nominate new pathogenic loci and have strong potential to improve the molecular diagnosis of patients with de novo SVs

    Jet Fuel Synthesis from Syngas Using Bifunctional Cobalt-Based Catalysts

    No full text
    Advanced biofuels are required to facilitate the energy transition away from fossil fuels and lower the accompanied CO2 emissions. Particularly, jet fuel needs a renewable substitute, for which novel production routes and technology are needed that are more efficient and economically viable. The direct conversion of bio-syngas into fuel is one such development that could improve the efficiency of biomass for jet fuel processes. In this work, bifunctional catalysts based on hierarchical zeolites are prepared, tested and evaluated for their potential use in the production of actual jet fuel. The bifunctional catalysts Co/H-mesoZSM-5, Co/H-mesoBETA and Co/H-mesoY have been applied, and their performance is compared with their microporous zeolite-based counterparts and two conventional Fischer–Tropsch Co catalysts. Co/H-mesoZSM-5 and Co/H-mesoBETA showed great potential for the direct production of jet fuel as bifunctional catalysts. Besides the high jet fuel yields under Fischer–Tropsch synthesis conditions at, respectively, 30.4% and 41.0%, the product also contained the high branched/linear hydrocarbon ratio desired to reach jet fuel specifications. This reveals the great potential for the direct conversion of syngas into jet fuel using catalysts that can be prepared in few steps from commercially available materials

    Sperm DNA damage causes genomic instability in early embryonic development

    Get PDF
    Genomic instability is common in human embryos, but the underlying causes are largely unknown. Here, we examined the consequences of sperm DNA damage on the embryonic genome by single-cell whole-genome sequencing of individual blastomeres from bovine embryos produced with sperm damaged by γ-radiation. Sperm DNA damage primarily leads to fragmentation of the paternal chromosomes followed by random distribution of the chromosomal fragments over the two sister cells in the first cell division. An unexpected secondary effect of sperm DNA damage is the induction of direct unequal cleavages, which include the poorly understood heterogoneic cell divisions. As a result, chaotic mosaicism is common in embryos derived from fertilizations with damaged sperm. The mosaic aneuploidies, uniparental disomies, and de novo structural variation induced by sperm DNA damage may compromise fertility and lead to rare congenital disorders when embryos escape developmental arrest.</p

    Sperm DNA damage causes genomic instability in early embryonic development

    Get PDF
    Genomic instability is common in early embryo development, but the underlying causes are largely unknown. Here we examined the consequences of sperm DNA damage on the embryonic genome by single-cell genome sequencing of individual blastomeres from bovine embryos produced with sperm damaged by radiation. Sperm DNA damage caused fragmentation of chromosomes and segregation errors such as heterogoneic cell divisions yielding a broad spectrum of genomic aberrations that are similar to those frequently found in human embryos. The mosaic aneuploidies, mixoploidy, uniparental disomies and de novo structural variation induced upon sperm DNA damage may compromise health and lead to rare genomic disorders when embryos escape developmental arrest.One Sentence Summary DNA damage in sperm cells leads to genomic defects in embryo

    Measuring mutation accumulation in single human adult stem cells by whole-genome sequencing of organoid cultures

    No full text
    Characterization of mutational processes in adult stem cells (ASCs) will improve our understanding of aging-related diseases, such as cancer and organ failure, and may ultimately help prevent the development of these diseases. Here, we present a method for cataloging mutations in individual human ASCs without the necessity of using error-prone whole-genome amplification. Single ASCs are expanded in vitro into clonal organoid cultures to generate sufficient DNA for accurate whole-genome sequencing (WGS) analysis. We developed a data-analysis pipeline that identifies with high confidence somatic variants that accumulated in vivo in the original ASC. These genome-wide mutation catalogs are valuable resources for the characterization of the underlying mutational mechanisms. In addition, this protocol can be used to determine the effects of culture conditions or mutagen exposure on mutation accumulation in ASCs in vitro. Here, we describe a protocol for human liver ASCs that can be completed over a period of 3-4 months with hands-on time of ∼5 d
    corecore