378 research outputs found

    AN ECONOMIC AND RISK ANALYSIS OF THE EFFECTS OF TILLAGE AND NITROGEN SOURCE ON SOIL CARBON SEQUESTRATION IN CORN PRODUCTION

    Get PDF
    The economic potential of no-tillage versus conventional tillage to sequester soil carbon using either commercial nitrogen or manure for continuous corn production is evaluated. Results indicate which system provides the highest net returns, which system is preferred by risk averse decision makers, and the price of carbon credits under alternative risk aversion preferences.Risk and Uncertainty,

    Development of a method for the detection and confirmation of the alpha-2 agonist amitraz and its major metabolite in horse urine

    Get PDF
    Amitraz (N′-(2,4-dimethylphenyl)-N-[[(2,4-dimethylphenyl)imino] methyl]-N-methyl-methanimidamide) is an alpha-2 adrenergic agonist used in veterinary medicine primarily as a scabicide- or acaricide-type insecticide. As an alpha-2 adrenergic agonist, it also has sedative/tranquilizing properties and is, therefore, listed as an Association of Racing Commissioners International Class 3 Foreign Substance, indicating its potential to influence the outcome of horse races. We identified the principal equine metabolite of amitraz as N-2,4-dimethylphenyl-N′-methylformamidine by electrospray ionization(+)-mass spectrometry and developed a gas chromatographic-mass spectrometric (GC-MS) method for its detection, quantitation, and confirmation in performance horse regulation. The GC-MS method involves derivatization with t-butyldimethylsilyl groups; selected ion monitoring (SIM) of m/z 205 (quantifier ion), 278, 261, and 219 (qualifier ions); and elaboration of a calibration curve based on ion area ratios involving simultaneous SIM acquisition of an internal standard m/z 208 quantifier ion based on an in-house synthesized d6 deuterated metabolite. The limit of detection of the method is approximately 5 ng/mL in urine and is sufficiently sensitive to detect the peak urinary metabolite at 1 h post dose, following administration of amitraz at a 75-mg/horse intraveneous dose

    Spectroscopy of the inner companion of the pulsar PSR J0337+1715

    Get PDF
    The hierarchical triple system PSR J0337+1715 offers an unprecedented laboratory to study secular evolution of interacting systems and to explore the complicated mass-transfer history that forms millisecond pulsars and helium-core white dwarfs. The latter in particular, however, requires knowledge of the properties of the individual components of the system. Here we present precise optical spectroscopy of the inner companion in the PSR J0337+1715 system. We confirm it as a hot, low-gravity DA white dwarf with Teff=15,800+/-100 K and log(g)=5.82+/-0.05. We also measure an inner mass ratio of 0.1364+/-0.0015, entirely consistent with that inferred from pulsar timing, and a systemic radial velocity of 29.7+/-0.3 km/s. Combined with the mass (0.19751 Msun) determined from pulsar timing, our measurement of the surface gravity implies a radius of 0.091+/-0.005 Rsun; combined further with the effective temperature and extinction, the photometry implies a distance of 1300+/-80 pc. The high temperature of the companion is somewhat puzzling: with current models, it likely requires a recent period of unstable hydrogen burning, and suggests a surprisingly short lifetime for objects at this phase in their evolution. We discuss the implications of these measurements in the context of understanding the PSR J0337+1715 system, as well as of low-mass white dwarfs in general.Comment: ApJ Letters, in press. 6 pages, two figures. v2 fixes typ

    Discovery and Follow-up of Rotating Radio Transients with the Green Bank and LOFAR Telescopes

    Get PDF
    We have discovered 21 Rotating Radio Transients (RRATs) in data from the Green Bank Telescope (GBT) 350-MHz Drift-scan and the Green Bank North Celestial Cap pulsar surveys using a new candidate sifting algorithm. RRATs are pulsars with sporadic emission that are detected through their bright single pulses rather than Fourier domain searches. We have developed {\tt RRATtrap}, a single-pulse sifting algorithm that can be integrated into pulsar survey data analysis pipelines in order to find RRATs and Fast Radio Bursts. We have conducted follow-up observations of our newly discovered sources at several radio frequencies using the GBT and Low Frequency Array (LOFAR), yielding improved positions and measurements of their periods, dispersion measures, and burst rates, as well as phase-coherent timing solutions for four of them. The new RRATs have dispersion measures (DMs) ranging from 15 to 97 pc cm3^{-3}, periods of 240 ms to 3.4 s, and estimated burst rates of 20 to 400 pulses hr1^{-1} at 350 MHz. We use this new sample of RRATs to perform statistical comparisons between RRATs and canonical pulsars in order to shed light on the relationship between the two populations. We find that the DM and spatial distributions of the RRATs agree with those of the pulsars found in the same survey. We find evidence that slower pulsars (i.e. P>200P>200 ms) are preferentially more likely to emit bright single pulses than are faster pulsars (P<200P<200 ms), although this conclusion is tentative. Our results are consistent with the proposed link between RRATs, transient pulsars, and canonical pulsars as sources in various parts of the pulse activity spectrum.Comment: 18 pages, 13 figures, 5 tables, published in Ap

    Remifentanil in the Horse: Identification and Detection of its Major Urinary Metabolite

    Get PDF
    Remifentanil (4-methoxycarbonyl-4-[(1-oxopropyl)phyenylamino]-1- piperidinepropionic acid methyl ester) is a μ-opioid receptor agonist with considerable abuse potential in racing horses. The identification of its major equine urinary metabolite, 4-methoxycarbonyl-4-[(1- oxopropyl)phenylamino]-1-piperidinepropionic acid, an ester hydrolysis product of remifentanil is reported. Administration of remifentanil HCl (5 mg, intravenous) produced clear-cut locomotor responses, establishing the clinical efficacy of this dose. ELISA analysis of postadministration urine samples readily detected fentanyl equivalents in these samples. Mass spectrometric analysis, using solid-phase extraction and trimethylsilyl (TMS) derivatization, showed the urine samples contained parent remifentanil in low concentrations, peaking at 1 h. More significantly, a major peak was identified as representing 4-methoxycarbonyl-4-[(1-oxopropyl)phenylamino]-1- piperidinepropionic acid, arising from ester hydrolysis of remifentanil. This metabolite reached its maximal urinary concentrations at 1 h and was present at up to 10-fold greater concentrations than parent remifentanil. Base hydrolysis of remifentanil yielded a carboxylic acid with the same mass spectral characteristics as those of the equine metabolite. In summary, these data indicate that remifentanil administration results in the appearance of readily detectable amounts of 4-methoxycarbonyl-4-[(1-oxopropyl)phenylamino]- 1-piperidinepropionic acid in urine. On this basis, screening and confirmation tests for this equine urinary metabolite should be optimized for forensic control of remifentanil

    Detection and Confirmation of Ractopamine and Its Metabolites in Horse Urine after Paylean® Administration

    Get PDF
    We have investigated the detection, confirmation, and metabolism of the beta-adrenergic agonist ractopamine administered as Paylean to the horse. A Testing Components Corporation enzyme-linked imunosorbent assay (ELISA) kit for ractopamine displayed linear response between 1.0 and 100 ng/ml, with an 1-50 of 10 ng/ml, and an effective screening limit of detection of 50 ng/mL. The kit was readily able to detect ractopamine equivalents in unhydrolyzed urine up to 24 h following a 300-mg oral dose. Gas chromatography-mass spectrometry (GC-MS) confirmation comprised glucuronidase treatment, solid-phase extraction, and trimethylsilyl derivatization, with selected-ion monitoring of ractopamine-tris(trimethylsilane) (TMS) m/z 267, 250, 179, and 502 ions. Quantitation was elaborated in comparison to a 445 Mw isoxsuprine-bis(TMS) internal standard monitored simultaneously. The instrumental limit of detection, defined as that number of ng on column for which signal-to-noise ratios for one or more diagnostic ions fell below a value of three, was 0.1 ng, corresponding to roughly 5 ng/mL in matrix. Based on the quantitation ions for ractopamine standards extracted from urine, standard curves showed a linear response for ractopamine concentrations between 10 and 100 ng/mL with a correlation coefficient r \u3e 0.99, whereas standards in the concentration range of 10-1000 ng/mL were fit to a second-order regression curve with r \u3e 0.99. The lower limit of detection for ractopamine in urine, defined as the lowest concentration at which the identity of ractopamine could be confirmed by comparison of diagnostic MS ion ratios, ranged between 25 and 50 ng/mL. Urine concentration of parent ractopamine 24 h post-dose was measured at 360 ng/mL by GC-MS after oral administration of 300 mg. Urinary metabolites were identified by electrospray ionization (+) tandem quadrupole mass spectrometry and were shown to include glucuronide, methyl, and mixed methyl-glucuronide conjugates. We also considered the possibility that an unusual conjugate added 113 amu to give an observed m/z 415 [M+H] species or two times 113 amu to give an m/z 528 [M+H] species with a daughter ion mass spectrum related to the previous one. Sulfate and mixed methyl-sulfate conjugates were revealed following glucuronidase treatment, suggesting that sulfation occurs in combination with glucuronidation. We noted a paired chromatographic peak phenomenon of apparent ractopamine metabolites appearing as doublets of equivalent intensity with nearly identical mass spectra on GC-MS and concluded that this phenomenon is consistent with Paylean being a mixture of RR, RS, SR, and SS diastereomers of ractopamine. The results suggest that ELISA-based screening followed by glucuronide hydrolysis, parent drug recovery, and TMS derivatization provide an effective pathway for detection and GC-MS confirmation of ractopamine in equine urine

    A millisecond pulsar in a stellar triple system

    Full text link
    Gravitationally bound three-body systems have been studied for hundreds of years and are common in our Galaxy. They show complex orbital interactions, which can constrain the compositions, masses, and interior structures of the bodies and test theories of gravity, if sufficiently precise measurements are available. A triple system containing a radio pulsar could provide such measurements, but the only previously known such system, B1620-26 (with a millisecond pulsar, a white dwarf, and a planetary-mass object in an orbit of several decades), shows only weak interactions. Here we report precision timing and multi-wavelength observations of PSR J0337+1715, a millisecond pulsar in a hierarchical triple system with two other stars. Strong gravitational interactions are apparent and provide the masses of the pulsar (1.4378(13) Msun, where Msun is the solar mass and the parentheses contain the uncertainty in the final decimal places) and the two white dwarf companions (0.19751(15) Msun and 0.4101(3) Msun), as well as the inclinations of the orbits (both approximately 39.2 degrees). The unexpectedly coplanar and nearly circular orbits indicate a complex and exotic evolutionary past that differs from those of known stellar systems. The gravitational field of the outer white dwarf strongly accelerates the inner binary containing the neutron star, and the system will thus provide an ideal laboratory in which to test the strong equivalence principle of general relativity.Comment: 17 pages, 3 figures, 1 table. Published online by Nature on 5 Jan 2014. Extremely minor differences with published version may exis

    The Green Bank Northern Celestial Cap Pulsar Survey - I: Survey Description, Data Analysis, and Initial Results

    Get PDF
    We describe an ongoing search for pulsars and dispersed pulses of radio emission, such as those from rotating radio transients (RRATs) and fast radio bursts (FRBs), at 350 MHz using the Green Bank Telescope. With the Green Bank Ultimate Pulsar Processing Instrument, we record 100 MHz of bandwidth divided into 4,096 channels every 81.92 μs\mu s. This survey will cover the entire sky visible to the Green Bank Telescope (δ>40\delta > -40^\circ, or 82% of the sky) and outside of the Galactic Plane will be sensitive enough to detect slow pulsars and low dispersion measure (<<30 pccm3\mathrm{pc\,cm^{-3}}) millisecond pulsars (MSPs) with a 0.08 duty cycle down to 1.1 mJy. For pulsars with a spectral index of -1.6, we will be 2.5 times more sensitive than previous and ongoing surveys over much of our survey region. Here we describe the survey, the data analysis pipeline, initial discovery parameters for 62 pulsars, and timing solutions for 5 new pulsars. PSR J0214++5222 is an MSP in a long-period (512 days) orbit and has an optical counterpart identified in archival data. PSR J0636++5129 is an MSP in a very short-period (96 minutes) orbit with a very low mass companion (8 MJM_\mathrm{J}). PSR J0645++5158 is an isolated MSP with a timing residual RMS of 500 ns and has been added to pulsar timing array experiments. PSR J1434++7257 is an isolated, intermediate-period pulsar that has been partially recycled. PSR J1816++4510 is an eclipsing MSP in a short-period orbit (8.7 hours) and may have recently completed its spin-up phase.Comment: 18 pages, 10 figures, 5 tables, accepted by Ap

    Student Satisfaction and Performance in an Online Teacher Certification Program

    Get PDF
    The article presents a study which demonstrates the effectiveness of an online post baccalaureate teacher certification program developed by a Wisconsin university. The case method approach employing multiple methods and multiple data sources were used to investigate the degree to which pre-service teachers were prepared to teach. It was concluded that the study supports online delivery as an effective means of teacher preparation, but it was limited in the number of students followed into their first year of teaching

    The Green Bank Northern Celestial Cap Pulsar Survey II: The Discovery and Timing of Ten Pulsars

    Full text link
    We present timing solutions for ten pulsars discovered in 350 MHz searches with the Green Bank Telescope. Nine of these were discovered in the Green Bank Northern Celestial Cap survey and one was discovered by students in the Pulsar Search Collaboratory program in analysis of drift-scan data. Following discovery and confirmation with the Green Bank Telescope, timing has yielded phase-connected solutions with high precision measurements of rotational and astrometric parameters. Eight of the pulsars are slow and isolated, including PSR J0930-2301, a pulsar with nulling fraction lower limit of \sim30\% and nulling timescale of seconds to minutes. This pulsar also shows evidence of mode changing. The remaining two pulsars have undergone recycling, accreting material from binary companions, resulting in higher spin frequencies. PSR J0557-2948 is an isolated, 44 \rm{ms} pulsar that has been partially recycled and is likely a former member of a binary system which was disrupted by a second supernova. The paucity of such so-called `disrupted binary pulsars' (DRPs) compared to double neutron star (DNS) binaries can be used to test current evolutionary scenarios, especially the kicks imparted on the neutron stars in the second supernova. There is some evidence that DRPs have larger space velocities, which could explain their small numbers. PSR J1806+2819 is a 15 \rm{ms} pulsar in a 44 day orbit with a low mass white dwarf companion. We did not detect the companion in archival optical data, indicating that it must be older than 1200 Myr.Comment: 9 pages, 5 figure
    corecore