10,861 research outputs found

    An AdS/QCD holographic wavefunction for the rho meson and diffractive rho meson electroproduction

    Full text link
    We show that AdS/QCD generates predictions for the rate of diffractive rho meson electroproduction that are in agreement with data collected at the HERA electron-proton collider.Comment: 9 pages, 4 figures. Figure 3 added to illustrate that the AdS/QCD prediction is impressive. Accepted for publication in Physical Review Letter

    Comparison of a quasi-3D analysis and experimental performance for three compact radial turbines

    Get PDF
    An experimental aerodynamic evaluation of three compact radial turbine builds was performed. Two rotors which were 40 to 50 percent shorter in axial length than conventional state of the art radial rotors were tested. A single nozzle design was used. One rotor was tested with the nozzle at two stagger angle settings. A second rotor was tested with the nozzle in only the closed down setting. Experimental results were compared to predict results from a quasi-3D inviscid and boundary layer analysis, called Meridl/Tsonic/Blayer (MTSB). This analysis was used to predict turbine performance. It has previously been calibrated only for axial, not radial, turbomachinery. The predicted and measured efficiencies were compared at the design point for the three turbines. At the design points the analysis overpredicted the efficiency by less than 1.7 points. Comparisons were also made at off-design operating points. The results of these comparisons showed the importance of an accurate clearance model for efficiency predictions and also that there are deficiencies in the incidence loss model used

    Neutral kaon mixing beyond the standard model with nf=2+1 chiral fermions

    Get PDF
    We compute the hadronic matrix elements of the four-quark operators needed for the study of neutral kaon mixing beyond the Standard Model (SM). We use nf=2+1 flavours of domain-wall fermions (DWF) which exhibit good chiral-flavour symmetry. The renormalization is performed non-perturbatively through the RI-MOM scheme and our results are converted perturbatively to MSbar. The computation is performed on a single lattice spacing a=0.086 fm with a lightest unitary pion mass of 290 MeV. The various systematic errors, including the discretisation effects, are estimated and discussed. Our results confirm a previous quenched study, where large ratios of non-SM to SM matrix elements were obtained.Comment: 5 pages, 4 figures, 1 table. v2 paper version, R3 and B3 corrected, conversion to 2GeV added, references adde

    An algebraic turbulence model for three-dimensional viscous flows

    Get PDF
    An algebraic turbulence model is proposed for use with three-dimensional Navier-Stokes analyses. It incorporates features of both the Baldwin-Lomax and Cebeci-Smith models. The Baldwin-Lomax model uses the maximum of a function f(y) to determine length and velocity scales. An analysis of the Baldwin-Lomax model shows that f(y) can have a spurious maximum close to the wall, causing numerical problems and non-physical results. The proposed model uses integral relations to determine delta(*) u(sub e) and delta used in the Cebeci-Smith mode. It eliminates a constant in the Baldwin-Lomax model and determines the two remaining constants by comparison to the Cebeci-Smith formulation. Pressure gradient effects, a new wake model, and the implementation of these features in a three-dimensional Navier-Stokes code are also described. Results are shown for a flat plate boundary layer, an annular turbine cascade, and endwall heat transfer in a linear turbine cascade. The heat transfer results agree well with experimental data which shows large variations in endwall Stanton number contours with Reynolds number

    Proton lifetime bounds from chirally symmetric lattice QCD

    Full text link
    We present results for the matrix elements relevant for proton decay in Grand Unified Theories (GUTs). The calculation is performed at a fixed lattice spacing a^{-1}=1.73(3) GeV using 2+1 flavors of domain wall fermions on lattices of size 16^3\times32 and 24^3\times64 with a fifth dimension of length 16. We use the indirect method which relies on an effective field theory description of proton decay, where we need to estimate the low energy constants, \alpha = -0.0112(25) GeV^3 and \beta = 0.0120(26) GeV^3. We relate these low energy constants to the proton decay matrix elements using leading order chiral perturbation theory. These can then be combined with experimental bounds on the proton lifetime to bound parameters of individual GUTs.Comment: 17 pages, 9 Figure

    International Action to Combat Aircraft Hijacking

    Get PDF

    International Action to Combat Aircraft Hijacking

    Get PDF
    • …
    corecore