707 research outputs found

    The Effects of Risk Management Programs on Financial Professionals\u27 Judgments

    Get PDF
    Despite the present focus in practice on enterprise risk management (ERM), academic studies have not responded to the question, “How do risk management programs (RMPs) influence the business decisions of financial professionals?” This study addresses this issue by examining the effects of RMPs on the levels of judgment conservatism and effort exercised by financial professionals. Specifically, in a 2 x 2 between-subjects experiment using experienced financial professionals as participants, I manipulated RMP type (i.e., robust or ceremonial) and financial risk level (i.e., high or low). The study examines the effect of RMP type and the interaction of RMP type and financial risk level on the degree of conservatism and effort of financial professionals’ business decisions. A robust RMP receives strong support from senior management and board members, who then hold financial professionals accountable for the level of financial risk that they assume in making business decisions. A ceremonial RMP lacks any real or substantive management or board support, but exists primarily to provide an appearance of a functioning and regulatory compliant RMP. Risk management interview studies (Viscelli, 2013; Cohen et al., 2015) support the relevance of robust (agency theory) versus ceremonial (institutional theory) perspectives from risk management practitioners. Contrary to prediction, no significant relationship was found between RMP type or the interaction of RMP type with the financial risk level and either the degree of financial professional judgment conservatism or effort. However, a significant relationship between the financial risk level alone and the degree of financial professional judgment effort was found. These findings remain unchanged after adding to the model various possible control variables reflecting participants’ demographics and experience. Thus, the results of this study provide no evidence that a robust versus a ceremonial RMP significantly impacts financial professionals’ decisions about whether to make project investments or the amount of time or the extent of consultation needed for them to decide. Additional analyses revealed significant relationships between RMP type or investment size and other dependent variables. These results offer important implications for practitioners and policymakers, as well as contribute to academic research about new applications of accountability and agency theories

    Chandra Detection of a TypeII Quasar at z=3.288

    Get PDF
    We report on observations of a TypeII quasar at redshift z=3.288, identified as a hard X-ray source in a 185 ks observation with the Chandra X-ray Observatory and as a high-redshift photometric candidate from deep, multiband optical imaging. CXOJ084837.9+445352 (hereinafter CXO52) shows an unusually hard X-ray spectrum from which we infer an absorbing column density N(H) = (4.8+/-2.1)e23 / cm2 (90% confidence) and an implied unabsorbed 2-10 keV rest-frame luminosity of L(2-10) = 3.3e44 ergs/s, well within the quasar regime. Hubble Space Telescope imaging shows CXO52 to be elongated with slight morphological differences between the WFPC2 F814W and NICMOS F160W bands. Optical and near-infrared spectroscopy of CXO52 show high-ionization emission lines with velocity widths ~1000 km/s and flux ratios similar to a Seyfert2 galaxy or radio galaxy. The latter are the only class of high-redshift TypeII luminous AGN which have been extensively studied to date. Unlike radio galaxies, however, CXO52 is radio quiet, remaining undetected at radio wavelengths to fairly deep limits, f(4.8GHz) < 40 microJy. High-redshift TypeII quasars, expected from unification models of active galaxies and long-thought necessary to explain the X-ray background, are poorly constrained observationally with few such systems known. We discuss recent observations of similar TypeII quasars and detail search techniques for such systems: namely (1) X-ray selection, (2) radio selection, (3) multi-color imaging selection, and (4) narrow-band imaging selection. Such studies are likely to begin identifying luminous, high-redshift TypeII systems in large numbers. We discuss the prospects for these studies and their implications to our understanding of the X-ray background.Comment: 28 pages, 5 figures; to appear in The Astrophysical Journa

    Observations and Theoretical Implications of the Large Separation Lensed Quasar SDSS J1004+4112

    Full text link
    We study the recently discovered gravitational lens SDSS J1004+4112, the first quasar lensed by a cluster of galaxies. It consists of four images with a maximum separation of 14.62''. The system has been confirmed as a lensed quasar at z=1.734 on the basis of deep imaging and spectroscopic follow-up observations. We present color-magnitude relations for galaxies near the lens plus spectroscopy of three central cluster members, which unambiguously confirm that a cluster at z=0.68 is responsible for the large image separation. We find a wide range of lens models consistent with the data, but they suggest four general conclusions: (1) the brightest cluster galaxy and the center of the cluster potential well appear to be offset by several kpc; (2) the cluster mass distribution must be elongated in the North--South direction, which is consistent with the observed distribution of cluster galaxies; (3) the inference of a large tidal shear (~0.2) suggests significant substructure in the cluster; and (4) enormous uncertainty in the predicted time delays between the images means that measuring the delays would greatly improve constraints on the models. We also compute the probability of such large separation lensing in the SDSS quasar sample, on the basis of the CDM model. The lack of large separation lenses in previous surveys and the discovery of one in SDSS together imply a mass fluctuation normalization \sigma_8=1.0^{+0.4}_{-0.2} (95% CL), if cluster dark matter halos have an inner slope -1.5. Shallower profiles would require higher values of \sigma_8. Although the statistical conclusion might be somewhat dependent on the degree of the complexity of the lens potential, the discovery is consistent with the predictions of the abundance of cluster-scale halos in the CDM scenario. (Abridged)Comment: 21 pages, 24 figures, 5 tables, accepted for publication in Ap

    Heritability of subcortical volumetric traits in mesial temporal lobe epilepsy.

    Get PDF
    OBJECTIVES: We aimed to 1) determine if subcortical volume deficits are common to mesial temporal lobe epilepsy (MTLE) patients and their unaffected siblings 2) assess the suitability of subcortical volumetric traits as endophenotypes for MTLE. METHODS: MRI-based volume measurements of the hippocampus, amygdala, thalamus, caudate, putamen and pallidium were generated using an automated brain reconstruction method (FreeSurfer) for 101 unrelated 'sporadic' MTLE patients [70 with hippocampal sclerosis (MTLE+HS), 31 with MRI-negative TLE], 83 unaffected full siblings of patients and 86 healthy control subjects. Changes in the volume of subcortical structures in patients and their unaffected siblings were determined by comparison with healthy controls. Narrow sense heritability was estimated ipsilateral and contralateral to the side of seizure activity. RESULTS: MTLE+HS patients displayed significant volume deficits across the hippocampus, amygdala and thalamus ipsilaterally. In addition, volume loss was detected in the putamen bilaterally. These volume deficits were not present in the unaffected siblings of MTLE+HS patients. Ipsilaterally, the heritability estimates were dramatically reduced for the volume of the hippocampus, thalamus and putamen but remained in the expected range for the amygdala. MRI-negative TLE patients and their unaffected siblings showed no significant volume changes across the same structures and heritability estimates were comparable with calculations from a healthy population. CONCLUSIONS: The findings indicate that volume deficits for many subcortical structures in 'sporadic' MTLE+HS are not heritable and likely related to acquired factors. Therefore, they do not represent suitable endophenotypes for MTLE+HS. The findings also support the view that, at a neuroanatomical level, MTLE+HS and MRI-negative TLE represent two distinct forms of MTLE

    An Initial Survey of White Dwarfs in the Sloan Digital Sky Survey

    Full text link
    An initial assessment is made of white dwarf and hot subdwarf stars observed in the Sloan Digital Sky Survey. In a small area of sky (190 square degrees), observed much like the full survey will be, 269 white dwarfs and 56 hot subdwarfs are identified spectroscopically where only 44 white dwarfs and 5 hot subdwarfs were known previously. Most are ordinary DA (hydrogen atmosphere) and DB (helium) types. In addition, in the full survey to date, a number of WDs have been found with uncommon spectral types. Among these are blue DQ stars displaying lines of atomic carbon; red DQ stars showing molecular bands of C_2 with a wide variety of strengths; DZ stars where Ca and occasionally Mg, Na, and/or Fe lines are detected; and magnetic WDs with a wide range of magnetic field strengths in DA, DB, DQ, and (probably) DZ spectral types. Photometry alone allows identification of stars hotter than 12000 K, and the density of these stars for 15<g<20 is found to be ~2.2 deg^{-2} at Galactic latitudes 29-62 deg. Spectra are obtained for roughly half of these hot stars. The spectra show that, for 15<g<17, 40% of hot stars are WDs and the fraction of WDs rises to ~90% at g=20. The remainder are hot sdB and sdO stars.Comment: Accepted for AJ; 43 pages, including 12 figures and 5 table

    Colors of 2625 Quasars at 0<z<5 Measured in the Sloan Digital Sky Survey Photometric System

    Full text link
    We present an empirical investigation of the colors of quasars in the Sloan Digital Sky Survey (SDSS) photometric system. The sample studied includes 2625 quasars with SDSS photometry. The quasars are distributed in a 2.5 degree wide stripe centered on the Celestial Equator covering ∌529\sim529 square degrees. Positions and SDSS magnitudes are given for the 898 quasars known prior to SDSS spectroscopic commissioning. New SDSS quasars represent an increase of over 200% in the number of known quasars in this area of the sky. The ensemble average of the observed colors of quasars in the SDSS passbands are well represented by a power-law continuum with αΜ=−0.5\alpha_{\nu} = -0.5 (fΜ∝Μαf_{\nu} \propto \nu^{\alpha}). However, the contributions of the 3000A˚3000 {\rm \AA} bump and other strong emission lines have a significant effect upon the colors. The color-redshift relation exhibits considerable structure, which may be of use in determining photometric redshifts for quasars. The range of colors can be accounted for by a range in the optical spectral index with a distribution αΜ=−0.5±0.65\alpha_{\nu}=-0.5\pm0.65 (95% confidence), but there is a red tail in the distribution. This tail may be a sign of internal reddening. Finally, we show that there is a continuum of properties between quasars and Seyfert galaxies and we test the validity of the traditional division between the two classes of AGN.Comment: 66 pages, 15 figures (3 color), accepted by A

    Cluster M Mycobacteriophages Bongo, PegLeg, and Rey with Unusually Large Repertoires of tRNA Isotopes

    Full text link
    Genomic analysis of a large set of phages infecting the common hostMycobacterium smegmatis mc2155 shows that they span considerable genetic diversity. There are more than 20 distinct types that lack nucleotide similarity with each other, and there is considerable diversity within most of the groups. Three newly isolated temperate mycobacteriophages, Bongo, PegLeg, and Rey, constitute a new group (cluster M), with the closely related phages Bongo and PegLeg forming subcluster M1 and the more distantly related Rey forming subcluster M2. The cluster M mycobacteriophages have siphoviral morphologies with unusually long tails, are homoimmune, and have larger than average genomes (80.2 to 83.7 kbp). They exhibit a variety of features not previously described in other mycobacteriophages, including noncanonical genome architectures and several unusual sets of conserved repeated sequences suggesting novel regulatory systems for both transcription and translation. In addition to containing transfer-messenger RNA and RtcB-like RNA ligase genes, their genomes encode 21 to 24 tRNA genes encompassing complete or nearly complete sets of isotypes. We predict that these tRNAs are used in late lytic growth, likely compensating for the degradation or inadequacy of host tRNAs. They may represent a complete set of tRNAs necessary for late lytic growth, especially when taken together with the apparent lack of codons in the same late genes that correspond to tRNAs that the genomes of the phages do not obviously encode

    Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>People with diabetes can suffer from diverse complications that seriously erode quality of life. Diabetes, costing the United States more than $174 billion per year in 2007, is expected to take an increasingly large financial toll in subsequent years. Accurate projections of diabetes burden are essential to policymakers planning for future health care needs and costs.</p> <p>Methods</p> <p>Using data on prediabetes and diabetes prevalence in the United States, forecasted incidence, and current US Census projections of mortality and migration, the authors constructed a series of dynamic models employing systems of difference equations to project the future burden of diabetes among US adults. A three-state model partitions the US population into no diabetes, undiagnosed diabetes, and diagnosed diabetes. A four-state model divides the state of "no diabetes" into high-risk (prediabetes) and low-risk (normal glucose) states. A five-state model incorporates an intervention designed to prevent or delay diabetes in adults at high risk.</p> <p>Results</p> <p>The authors project that annual diagnosed diabetes incidence (new cases) will increase from about 8 cases per 1,000 in 2008 to about 15 in 2050. Assuming low incidence and relatively high diabetes mortality, total diabetes prevalence (diagnosed and undiagnosed cases) is projected to increase from 14% in 2010 to 21% of the US adult population by 2050. However, if recent increases in diabetes incidence continue and diabetes mortality is relatively low, prevalence will increase to 33% by 2050. A middle-ground scenario projects a prevalence of 25% to 28% by 2050. Intervention can reduce, but not eliminate, increases in diabetes prevalence.</p> <p>Conclusions</p> <p>These projected increases are largely attributable to the aging of the US population, increasing numbers of members of higher-risk minority groups in the population, and people with diabetes living longer. Effective strategies will need to be undertaken to moderate the impact of these factors on national diabetes burden. Our analysis suggests that widespread implementation of reasonably effective preventive interventions focused on high-risk subgroups of the population can considerably reduce, but not eliminate, future increases in diabetes prevalence.</p
    • 

    corecore