448 research outputs found

    Manned Orbital Transfer Vehicle (MOTV). Volume 3: Program requirements documents

    Get PDF
    The requirements for geosynchronous orbit capability using the manned orbit transfer vehicle (MOTV) are defined. The program requirements, the mission requirements, and the system and subsystem requirements for the MOTV are discussed. The mission requirements include a geosynchronous Earth orbit vehicle for the construction, servicing, repair and operation of communications, solar power, and Earth observation satellites

    Manned Orbital Transfer Vehicle (MOTV). Volume 2: Mission handbook

    Get PDF
    The use of the manned orbit transfer vehicle (MOTV) for support of future space missions is defined. Some 20 generic missions are defined each representative of the types of missions expected to be flown in the future. These include the service and update of communications satellites, emergency repair of surveillance satellites, and passenger transport of a six man crew rotation/resupply service to a deep space command post. The propulsive and functional capabilities required of the MOTV to support a particular mission are described and data to enable the user to determine the number of STS flights needed to support the mission, mission peculiar equipment requirements, parametrics on mission phasing and requirements, ground and flight support requirements, recovery considerations, and IVA/EVA trade analysis are presented

    Manned Orbital Transfer Vehicle (MOTV). Volume 4: Supporting analysis

    Get PDF
    Generic missions were defined to enable potential users to determine the parameters for suggested user projects. Mission modes were identified for providing operation, interfaces, performance, and cost data for studying payloads. Safety requirements for emergencies during various phases of the mission are considered with emphasis on radiation hazards

    Manned Orbital Transfer Vehicle (MOTV). Volume 6: Five year program plan

    Get PDF
    The five year program plan for the manned orbit transfer vehicle (MOTV) is presented. The planning, schedules, cost estimates, and supporting data (objectives, constraints, assumptions, etc.) associated with the development of the MOTV are discussed. The plan, in addition to the above material, identifies the supporting research and technology required to resolve issues critical to MOTV development

    Manned geosynchronous mission requirements and systems analysis study. Volume 1: Executive summary

    Get PDF
    The crew capsule of the MOTV was studied with emphasis on crew accommodations, crew capsule functional requirements, subsystem interface definition between crew module and propulsion module, and man rating requirements. Competing mission modes were studied covering a wide range of propulsion concepts. These included one stage, one and one half stage, and two stage concepts using either the standard STS or an augmented STS. Several deorbit concepts were considered, including all propulsive modes, direct re-entry, and aeromaneuvering skip in skip out in the upper reaches of Earth's atmosphere. A five year plan covering costs, schedules, and critical technology issues is discussed

    Hyperbolic outer billiards : a first example

    Full text link
    We present the first example of a hyperbolic outer billiard. More precisely we construct a one parameter family of examples which in some sense correspond to the Bunimovich billiards.Comment: 11 pages, 8 figures, to appear in Nonlinearit

    Topological signature of deterministic chaos in short nonstationary signals from an optical parametric oscillator

    Full text link
    Although deterministic chaos has been predicted to occur in the triply resonant optical parametric oscillator (TROPO) fifteen years ago, experimental evidence of chaotic behavior in this system has been lacking so far, in marked contrast with most nonlinear systems, where chaos has been actively tracked and found. This situation is probably linked to the high sensitivity of the TROPO to perturbations, which adversely affects stationary operation at high power. We report the experimental observation in this system of a burst of irregular behavior of duration 80 microseconds. Although the system is highly nonstationary over this time interval, a topological analysis allows us to extract a clearcut signature of deterministic chaos from a time series segment of only 9 base cycles (3 microseconds). This result suggests that nonstationarity is not necessarily an obstacle to the characterization of chaos
    • …
    corecore