8 research outputs found

    Assessment of Five Chilling Tolerance Traits and GWAS Mapping in Rice Using the USDA Mini-Core Collection

    Get PDF
    Rice (Oryza sativa L.) is often exposed to cool temperatures during spring planting in temperate climates. A better understanding of genetic pathways regulating chilling tolerance will enable breeders to develop varieties with improved tolerance during germination and young seedling stages. To dissect chilling tolerance, five assays were developed; one assay for the germination stage, one assay for the germination and seedling stage, and three for the seedling stage. Based on these assays, five chilling tolerance indices were calculated and assessed using 202 O. sativa accessions from the Rice Mini-Core (RMC) collection. Significant differences between RMC accessions made the five indices suitable for genome-wide association study (GWAS) based quantitative trait loci (QTL) mapping. For young seedling stage indices, japonica and indica subspecies clustered into chilling tolerant and chilling sensitive accessions, respectively, while both subspecies had similar low temperature germinability distributions. Indica subspecies were shown to have chilling acclimation potential. GWAS mapping uncovered 48 QTL at 39 chromosome regions distributed across all 12 rice chromosomes. Interestingly, there was no overlap between the germination and seedling stage QTL. Also, 18 QTL and 32 QTL were in regions discovered in previously reported bi-parental and GWAS based QTL mapping studies, respectively. Two novel low temperature seedling survivability (LTSS)–QTL, qLTSS3-4 and qLTSS4-1, were not in a previously reported QTL region. QTL with strong effect alleles identified in this study will be useful for marker assisted breeding efforts to improve chilling tolerance in rice cultivars and enhance gene discovery for chilling tolerance

    Methodology for quantum logic gate constructions

    Full text link
    We present a general method to construct fault-tolerant quantum logic gates with a simple primitive, which is an analog of quantum teleportation. The technique extends previous results based on traditional quantum teleportation (Gottesman and Chuang, Nature {\bf 402}, 390, 1999) and leads to straightforward and systematic construction of many fault-tolerant encoded operations, including the π/8\pi/8 and Toffoli gates. The technique can also be applied to the construction of remote quantum operations that cannot be directly performed.Comment: 17 pages, mypsfig2, revtex. Revised with a different title, a new appendix for clarifying fault-tolerant preparation of quantum states, and various minor change

    Efficacy of Chicken Litter and Wood Biochars and Their Activated Counterparts in Heavy Metal Clean up from Wastewater

    No full text
    It is known that properties of activated biochars are tightly associated with those of the original feedstock as well as pyrolysis and activation conditions. This study examined two feedstock types, pine wood shavings and chicken litter, to produce biochars at two different pyrolysis temperatures and subsequently activated by steam, acid or base. In order to measure activation efficiency, all materials were characterized for their properties and ability to remediate two well-known heavy metals of concern: copper and arsenic. Base activated biochars were superior in arsenic adsorption, to acid or steam activated samples, but increase in adsorption was not significant to warrant use. For wood biochars, significant increases of surface functionality as related to oxygen bearing groups and surface charge were observed upon acid activation which led to increased copper ion adsorption. However, oxygen bearing functionalities were not sufficient to explain why chicken litter biochars and steam activated biochars appeared to be significantly superior to wood shavings in positively charged metal ion adsorption. For chicken litter, functionality of respective biochars could be related to phosphate containing groups inherited from feedstock composition, favorably positioning this feedstock in metal ion remediation applications

    Estimating Broad Sense Heritability and Investigating the Mechanism of Genetic Transmission of Cold Tolerance Using Mannitol as a Measure of Post-freeze Juice Degradation in Sugarcane and Energycane (Saccharum spp.)

    No full text
    In approximately 25% of the sugarcane-producing countries worldwide, conventional sugarcane (Saccharum spp. hybrids) is exposed to damaging freezes. A study was conducted during the 2009 and 2010 harvest seasons to compare late-season freeze tolerance among three groups: commercial Louisiana sugarcane genotypes, early generation genotypes selected for cold tolerance in the U.S. Department of Agriculture sugarcane breeding programs at Houma, LA, and Canal Point, FL, and potential energycane genotypes selected for high total biomass per acre. Mannitol concentrations in cane juice following freezing temperatures were determined to evaluate levels of cold tolerance. Genotypes selected for cold tolerance in Houma, LA, had significantly more late-season freeze tolerance than commercial sugarcane genotypes and genotypes selected in Canal Point, FL. Genotypes showing the most cold tolerance were Ho02-146 and Ho02-152, and those that were most highly susceptible were US87-1006 and US87-1003 (early-generation breeding genotypes) and L99-233 (commercial genotype). Broad-sense heritability for late-season cold tolerance in the two-year study was estimated at g(2) = 0.78. The enzymatic mannitol analysis successfully differentiated high-fiber energycane genotypes from those from other sources

    Validation of Yield Component Traits Identified by Genome-Wide Association Mapping in a tropical japonica × tropical japonica Rice Biparental Mapping Population

    No full text
    The Rice Diversity Panel 1 (RDP1) was developed for genome-wide association (GWA) studies to explore five rice ( L.) subpopulations (, , , , and ). The RDP1 was evaluated for over 30 traits, including agronomic, panicle architecture, seed, and disease traits and genotyped with 700,000 single nucleotide polymorphisms (SNPs). Most rice grown in the southern United States is and thus the diversity in this subpopulation is interesting to U.S. breeders. Among the RDP1 accessions, ‘Estrela’ and ‘NSFTV199’ are both phenotypically and genotypically diverse, thus making them excellent parents for a biparental mapping population. The objectives were to (i) ascertain the GWA QTLs from the RDP1 GWA studies that overlapped with the QTLs uncovered in an Estrela × NSFTV199 recombinant inbred line (RIL) population evaluated for 15 yield traits, and (ii) identify known or novel genes potentially controlling specific yield component traits. The 256 RILs were genotyped with 132 simple sequence repeat markers and 70 QTLs were found. Perl scripts were developed for automatic identification of the underlying candidate genes in the GWA QTL regions. Approximately 100 GWA QTLs overlapped with 41 Estrela × NSFTV199 QTL (RIL QTL) regions and 47 known genes were identified. Two seed trait RIL QTLs with overlapping GWA QTLs were not associated with a known gene. Segregating SNPs in the overlapping GWA QTLs for RIL QTLs with high values will be evaluated as potential DNA markers useful to breeding programs for the associated yield trait
    corecore