444 research outputs found
Comment on Experiments Related to the Aharonov-Bohm Phase Shift
Recent experiments undertaken by Caprez, Barwick, and Batelaan should clarify
the connections between classical and quantum theories in connection with the
Aharonov-Bohm phase shift. It is pointed out that resistive aspects for the
solenoid current carriers play a role in the classical but not the quantum
analysis for the phase shift. The observed absence of a classical lag effect
for a macroscopic solenoid does not yet rule out the possibility of a lag
explanation of the observed phase shift for a microscopic solenoid.Comment: 9 page
Blackbody Radiation and the Scaling Symmetry of Relativistic Classical Electron Theory with Classical Electromagnetic Zero-Point Radiation
It is pointed out that relativistic classical electron theory with classical
electromagnetic zero-point radiation has a scaling symmetry which is suitable
for understanding the equilibrium behavior of classical thermal radiation at a
spectrum other than the Rayleigh-Jeans spectrum. In relativistic classical
electron theory, the masses of the particles are the only scale-giving
parameters associated with mechanics while the action-angle variables are scale
invariant. The theory thus separates the interaction of the action variables of
matter and radiation from the scale-giving parameters. Classical zero-point
radiation is invariant under scattering by the charged particles of
relativistic classical electron theory. The basic ideas of the matter
-radiation interaction are illustrated in a simple relativistic classical
electromagnetic example.Comment: 18 page
The Blackbody Radiation Spectrum Follows from Zero-Point Radiation and the Structure of Relativistic Spacetime in Classical Physics
The analysis of this article is entirely within classical physics. Any
attempt to describe nature within classical physics requires the presence of
Lorentz-invariant classical electromagnetic zero-point radiation so as to
account for the Casimir forces between parallel conducting plates at low
temperatures. Furthermore, conformal symmetry carries solutions of Maxwell's
equations into solutions. In an inertial frame, conformal symmetry leaves
zero-point radiation invariant and does not connect it to non-zero-temperature;
time-dilating conformal transformations carry the Lorentz-invariant zero-point
radiation spectrum into zero-point radiation and carry the thermal radiation
spectrum at non-zero temperature into thermal radiation at a different
non-zero-temperature. However, in a non-inertial frame, a time-dilating
conformal transformation carries classical zero-point radiation into thermal
radiation at a finite non-zero-temperature. By taking the no-acceleration
limit, one can obtain the Planck radiation spectrum for blackbody radiation in
an inertial frame from the thermal radiation spectrum in an accelerating frame.
Here this connection between zero-point radiation and thermal radiation is
illustrated for a scalar radiation field in a Rindler frame undergoing
relativistic uniform proper acceleration through flat spacetime in two
spacetime dimensions. The analysis indicates that the Planck radiation spectrum
for thermal radiation follows from zero-point radiation and the structure of
relativistic spacetime in classical physics.Comment: 21 page
Quantum and Classical Disparity and Accord
Discrepancies and accords between quantum (QM) and classical mechanics (CM)
related to expectation values and periods are found for both the simple
harmonic oscillator (SHO) and a free particle in a box (FPB), which may apply
generally. These indicate non-locality is expected throughout QM. The FPB
energy states violate the Correspondence Principle. Previously unexpected
accords are found and proven that the classical and quantum expectation values
are the same for the expectation value of the second moment and the beat period
(i.e. beats between the phases for adjoining energy states) for the SHO for all
quantum numbers, n. However, for the FPB the beat periods differ significantly
at small n. It is shown that a particle's velocity in an infinite square well
varies, no matter how wide the box, nor how far the particle is from the walls.
The quantum free particle variances share an indirect commonality with the
Aharonov-Bohm and Aharonov-Casher effects in that there is a quantum action in
the absence of a force. The concept of an "Expectation Value over a Partial
Well Width" is introduced. This paper raises the question as to whether these
inconsistencies are undetectable, or can be empirically ascertained. These
inherent variances may need to be fixed, or nature is manifestly more
non-classical than expected.Comment: To be Published in International Journal of Theoretical Physics.
Published on line by IJTP 23 Sept.2008: Original at
http://www.springerlink.co
Deconstructing Decoherence
The study of environmentally induced superselection and of the process of
decoherence was originally motivated by the search for the emergence of
classical behavior out of the quantum substrate, in the macroscopic limit. This
limit, and other simplifying assumptions, have allowed the derivation of
several simple results characterizing the onset of environmentally induced
superselection; but these results are increasingly often regarded as a complete
phenomenological characterization of decoherence in any regime. This is not
necessarily the case: The examples presented in this paper counteract this
impression by violating several of the simple ``rules of thumb''. This is
relevant because decoherence is now beginning to be tested experimentally, and
one may anticipate that, in at least some of the proposed applications (e.g.,
quantum computers), only the basic principle of ``monitoring by the
environment'' will survive. The phenomenology of decoherence may turn out to be
significantly different.Comment: 13 two-column pages, 3 embedded figure
Advances in the proposed electromagnetic zero-point field theory of inertia
A NASA-funded research effort has been underway at the Lockheed Martin
Advanced Technology Center in Palo Alto and at California State University in
Long Beach to develop and test a recently published theory that Newton's
equation of motion can be derived from Maxwell's equations of electrodynamics
as applied to the zero-point field (ZPF) of the quantum vacuum. In this
ZPF-inertia theory, mass is postulated to be not an intrinsic property of
matter but rather a kind of electromagnetic drag force that proves to be
acceleration dependent by virtue of the spectral characteristics of the ZPF.
The theory proposes that interactions between the ZPF and matter take place at
the level of quarks and electrons, hence would account for the mass of a
composite neutral particle such as the neutron. An effort to generalize the
exploratory study of Haisch, Rueda and Puthoff (1994) into a proper
relativistic formulation has been successful. Moreover the principle of
equivalence implies that in this view gravitation would also be electromagnetic
in origin along the lines proposed by Sakharov (1968). With regard to exotic
propulsion we can definitively rule out one speculatively hypothesized
mechanism: matter possessing negative inertial mass, a concept originated by
Bondi (1957) is shown to be logically impossible. On the other hand, the linked
ZPF-inertia and ZPF-gravity concepts open the conceptual possibility of
manipulation of inertia and gravitation, since both are postulated to be
electromagnetic phenomena. It is hoped that this will someday translate into
actual technological potential. A key question is whether the proposed
ZPF-matter interactions generating the phenomenon of mass might involve one or
more resonances. This is presently under investigation.Comment: Revised version of invited presentation at 34th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference, July 13-15, 1998, Cleveland, OH, 10 pages, no
figure
Bound states of neutral particles in external electric fields
Neutral fermions of spin with magnetic moment can interact with
electromagnetic fields through nonminimal coupling. The Dirac--Pauli equation
for such a fermion coupled to a spherically symmetric or central electric field
can be reduced to two simultaneous ordinary differential equations by
separation of variables in spherical coordinates. For a wide variety of central
electric fields, bound-state solutions of critical energy values can be found
analytically. The degeneracy of these energy levels turns out to be numerably
infinite. This reveals the possibility of condensing infinitely many fermions
into a single energy level. For radially constant and radially linear electric
fields, the system of ordinary differential equations can be completely solved,
and all bound-state solutions are obtained in closed forms. The radially
constant field supports scattering solutions as well. For radially linear
fields, more energy levels (in addition to the critical one) are infinitely
degenerate. The simultaneous presence of central magnetic and electric fields
is discussed.Comment: REVTeX, 14 pages, no figur
Casimir force on a piston
We consider a massless scalar field obeying Dirichlet boundary conditions on
the walls of a two-dimensional L x b rectangular box, divided by a movable
partition (piston) into two compartments of dimensions a x b and (L-a) x b. We
compute the Casimir force on the piston in the limit L -> infinity. Regardless
of the value of a/b, the piston is attracted to the nearest end of the box.
Asymptotic expressions for the Casimir force on the piston are derived for a <<
b and a >> b.Comment: 10 pages, 1 figure. Final version, accepted for publication in Phys.
Rev.
Carbon partitioning and export in transgenic Arabidopsis thaliana with altered capacity for sucrose synthesis grown at low temperature: a role for metabolite transporters
We investigated the role of metabolite transporters in cold acclimation by comparing the responses of wild-type (WT) Arabidopsis thaliana (Heynh.) with that of transgenic plants over-expressing sucrose-phosphate synthase (SPSox) or with that of antisense repression of cytosolic fructose-1,6-bisphosphatase (FBPas). Plants were grown at 23 degrees C and then shifted to 5 degrees C. We compared the leaves shifted to 5 degrees C for 3 and 10 d with new leaves that developed at 5 degrees C with control leaves on plants at 23 degrees C. At 23 degrees C, ectopic expression of SPS resulted in 30% more carbon being fixed per day and an increase in sucrose export from source leaves. This increase in fixation and export was supported by increased expression of the plastidic triose-phosphate transporter AtTPT and, to a lesser extent, the high-affinity Suc transporter AtSUC1. The improved photosynthetic performance of the SPSox plants was maintained after they were shifted to 5 degrees C and this was associated with further increases in AtSUC1 expression but with a strong repression of AtTPT mRNA abundance. Similar responses were shown by WT plants during acclimation to low temperature and this response was attenuated in the low sucrose producing FBPas plants. These data suggest that a key element in recovering flux through carbohydrate metabolism in the cold is to control the partitioning of metabolites between the chloroplast and the cytosol, and Arabidopsis modulates the expression of AtTPT to maintain balanced carbon flow. Arabidopsis also up-regulates the expression of AtSUC1, and to lesser extent AtSUC2, as down-stream components facilitate sucrose transport in leaves that develop at low temperatures.info:eu-repo/semantics/publishedVersio
On uniqueness of tangent cones for Einstein manifolds
We show that for any Ricci-flat manifold with Euclidean volume growth the
tangent cone at infinity is unique if one tangent cone has a smooth
cross-section. Similarly, for any noncollapsing limit of Einstein manifolds
with uniformly bounded Einstein constants, we show that local tangent cones are
unique if one tangent cone has a smooth cross-section
- …