19,990 research outputs found
On Sasaki-Einstein manifolds in dimension five
We prove the existence of Sasaki-Einstein metrics on certain simply connected
5-manifolds where until now existence was unknown. All of these manifolds have
non-trivial torsion classes. On several of these we show that there are a
countable infinity of deformation classes of Sasaki-Einstein structures.Comment: 18 pages, Exposition was expanded and a reference adde
Mundell's International Economics: Adaptations and Debates
Most of the chapters in Mundell's International Economics differ, owing to adaptation, from the original sources. The revisions yield valuable insights into the contributions made by the initial publications. In this paper we look only at the changes that take the form of elisions of material. These outtakes are amusing but demonstrate how Mundell was willing to either irritate or ignore his discussants. Issues raised by them are important enough to warrant our further consideration. In doing so we question both the validity and the interpretation of some of the conclusions in the Nobel-cited capital mobility paper. Copyright 2005, International Monetary Fund
Some Heuristic Semiclassical Derivations of the Planck Length, the Hawking Effect and the Unruh Effect
The formulae for Planck length, Hawking temperature and Unruh-Davies
temperature are derived by using only laws of classical physics together with
the Heisenberg principle. Besides, it is shown how the Hawking relation can be
deduced from the Unruh relation by means of the principle of equivalence; the
deep link between Hawking effect and Unruh effect is in this way clarified.Comment: LaTex file, 6 pages, no figure
The Paradoxical Forces for the Classical Electromagnetic Lag Associated with the Aharonov-Bohm Phase Shift
The classical electromagnetic lag assocated with the Aharonov-Bohm phase
shift is obtained by using a Darwin-Lagrangian analysis similar to that given
by Coleman and Van Vleck to identify the puzzling forces of the Shockley-James
paradox. The classical forces cause changes in particle velocities and so
produce a relative lag leading to the same phase shift as predicted by Aharonov
and Bohm and observed in experiments. An experiment is proposed to test for
this lag aspect implied by the classical analysis but not present in the
currently-accepted quantum topological description of the phase shift.Comment: 8 pages, 3 figure
Energy properness and Sasakian-Einstein metrics
In this paper, we show that the existence of Sasakian-Einstein metrics is
closely related to the properness of corresponding energy functionals. Under
the condition that admitting no nontrivial Hamiltonian holomorphic vector
field, we prove that the existence of Sasakian-Einstein metric implies a
Moser-Trudinger type inequality. At the end of this paper, we also obtain a
Miyaoka-Yau type inequality in Sasakian geometry.Comment: 27 page
Derivation of the Blackbody Radiation Spectrum from a Natural Maximum-Entropy Principle Involving Casimir Energies and Zero-Point Radiation
By numerical calculation, the Planck spectrum with zero-point radiation is
shown to satisfy a natural maximum-entropy principle whereas alternative
choices of spectra do not. Specifically, if we consider a set of
conducting-walled boxes, each with a partition placed at a different location
in the box, so that across the collection of boxes the partitions are uniformly
spaced across the volume, then the Planck spectrum correspond to that spectrum
of random radiation (having constant energy kT per normal mode at low
frequencies and zero-point energy (1/2)hw per normal mode at high frequencies)
which gives maximum uniformity across the collection of boxes for the radiation
energy per box. The analysis involves Casimir energies and zero-point radiation
which do not usually appear in thermodynamic analyses. For simplicity, the
analysis is presented for waves in one space dimension.Comment: 11 page
Topology of multiple log transforms of 4-manifolds
Given a 4-manifold X and an imbedding of T^{2} x B^2 into X, we describe an
algorithm X --> X_{p,q} for drawing the handlebody of the 4-manifold obtained
from X by (p,q)-logarithmic transforms along the parallel tori. By using this
algorithm, we obtain a simple handle picture of the Dolgachev surface
E(1)_{p,q}, from that we deduce that the exotic copy E(1)_{p,q} # 5(-CP^2) of
E(1) # 5(-CP^2) differs from the original one by a codimension zero simply
connected Stein submanifold M_{p,q}, which are therefore examples of infinitely
many Stein manifolds that are exotic copies of each other (rel boundaries).
Furthermore, by a similar method we produce infinitely many simply connected
Stein submanifolds Z_{p} of E(1)_{p,2} # 2(-CP^2)$ with the same boundary and
the second Betti number 2, which are (absolutely) exotic copies of each other;
this provides an alternative proof of a recent theorem of the author and Yasui
[AY4]. Also, by using the description of S^2 x S^2 as a union of two cusps
glued along their boundaries, and by using this algorithm, we show that
multiple log transforms along the tori in these cusps do not change smooth
structure of S^2 x S^2.Comment: Updated, with 17 pages 21 figure
Distribution of the least-squares estimators of a single Brownian trajectory diffusion coefficient
In this paper we study the distribution function of the
estimators , which optimise the least-squares fitting of the diffusion coefficient
of a single -dimensional Brownian trajectory . We pursue
here the optimisation further by considering a family of weight functions of
the form , where is a time lag and
is an arbitrary real number, and seeking such values of for
which the estimators most efficiently filter out the fluctuations. We calculate
exactly for arbitrary and arbitrary spatial dimension
, and show that only for the distribution
converges, as , to the Dirac delta-function centered at
the ensemble average value of the estimator. This allows us to conclude that
only the estimators with possess an ergodic property, so that the
ensemble averaged diffusion coefficient can be obtained with any necessary
precision from a single trajectory data, but at the expense of a progressively
higher experimental resolution. For any the distribution
attains, as , a certain limiting form with a finite variance,
which signifies that such estimators are not ergodic.Comment: 27 pages, 5 figure
- …