13,128 research outputs found

    The Paradoxical Forces for the Classical Electromagnetic Lag Associated with the Aharonov-Bohm Phase Shift

    Full text link
    The classical electromagnetic lag assocated with the Aharonov-Bohm phase shift is obtained by using a Darwin-Lagrangian analysis similar to that given by Coleman and Van Vleck to identify the puzzling forces of the Shockley-James paradox. The classical forces cause changes in particle velocities and so produce a relative lag leading to the same phase shift as predicted by Aharonov and Bohm and observed in experiments. An experiment is proposed to test for this lag aspect implied by the classical analysis but not present in the currently-accepted quantum topological description of the phase shift.Comment: 8 pages, 3 figure

    The Blackbody Radiation Spectrum Follows from Zero-Point Radiation and the Structure of Relativistic Spacetime in Classical Physics

    Full text link
    The analysis of this article is entirely within classical physics. Any attempt to describe nature within classical physics requires the presence of Lorentz-invariant classical electromagnetic zero-point radiation so as to account for the Casimir forces between parallel conducting plates at low temperatures. Furthermore, conformal symmetry carries solutions of Maxwell's equations into solutions. In an inertial frame, conformal symmetry leaves zero-point radiation invariant and does not connect it to non-zero-temperature; time-dilating conformal transformations carry the Lorentz-invariant zero-point radiation spectrum into zero-point radiation and carry the thermal radiation spectrum at non-zero temperature into thermal radiation at a different non-zero-temperature. However, in a non-inertial frame, a time-dilating conformal transformation carries classical zero-point radiation into thermal radiation at a finite non-zero-temperature. By taking the no-acceleration limit, one can obtain the Planck radiation spectrum for blackbody radiation in an inertial frame from the thermal radiation spectrum in an accelerating frame. Here this connection between zero-point radiation and thermal radiation is illustrated for a scalar radiation field in a Rindler frame undergoing relativistic uniform proper acceleration through flat spacetime in two spacetime dimensions. The analysis indicates that the Planck radiation spectrum for thermal radiation follows from zero-point radiation and the structure of relativistic spacetime in classical physics.Comment: 21 page

    Derivation of the Blackbody Radiation Spectrum from a Natural Maximum-Entropy Principle Involving Casimir Energies and Zero-Point Radiation

    Get PDF
    By numerical calculation, the Planck spectrum with zero-point radiation is shown to satisfy a natural maximum-entropy principle whereas alternative choices of spectra do not. Specifically, if we consider a set of conducting-walled boxes, each with a partition placed at a different location in the box, so that across the collection of boxes the partitions are uniformly spaced across the volume, then the Planck spectrum correspond to that spectrum of random radiation (having constant energy kT per normal mode at low frequencies and zero-point energy (1/2)hw per normal mode at high frequencies) which gives maximum uniformity across the collection of boxes for the radiation energy per box. The analysis involves Casimir energies and zero-point radiation which do not usually appear in thermodynamic analyses. For simplicity, the analysis is presented for waves in one space dimension.Comment: 11 page

    Level-1 jet trigger hardware for the ALICE electromagnetic calorimeter at LHC

    Full text link
    The ALICE experiment at the LHC is equipped with an electromagnetic calorimeter (EMCal) designed to enhance its capabilities for jet measurement. In addition, the EMCal enables triggering on high energy jets. Based on the previous development made for the Photon Spectrometer (PHOS) level-0 trigger, a specific electronic upgrade was designed in order to allow fast triggering on high energy jets (level-1). This development was made possible by using the latest generation of FPGAs which can deal with the instantaneous incoming data rate of 26 Gbit/s and process it in less than 4 {\mu}s.Comment: proceeding of TWEPP-10 at Aachen. 6 pages, 4 figure

    A lack of response of the financial behaviors of biodiversity conservation nonprofits to changing economic conditions

    Get PDF
    The effectiveness of conservation organizations is determined in part by how they adapt to changing conditions. Over the previous decade, economic conditions in the United States (US) showed marked variation including a period of rapid growth followed by a major recession. We examine how biodiversity conservation nonprofits in the US responded to these changes through their financial behaviors, focusing on a sample of 90 biodiversity conservation nonprofits and the largest individual organization (The Nature Conservancy; TNC). For the 90 sampled organizations, an analysis of financial ratios derived from tax return data revealed little response to economic conditions. Similarly, more detailed examination of conservation expenditures and land acquisition practices of TNC revealed only one significant relationship with economic conditions: TNC accepted a greater proportion of conservation easements as donated in more difficult economic conditions. Our results suggest that the financial behaviors of US biodiversity conservation nonprofits are unresponsive to economic conditions

    Hyper-complex four-manifolds from the Tzitz\'eica equation

    Full text link
    It is shown how solutions to the Tzitz\'eica equation can be used to construct a family of (pseudo) hyper-complex metrics in four dimensions.Comment: To be published in J.Math.Phy

    Techniques for measuring atmospheric aerosols at the High Resolution Fly's Eye experiment

    Full text link
    We describe several techniques developed by the High Resolution Fly's Eye experiment for measuring aerosol vertical optical depth, aerosol horizontal attenuation length, and aerosol phase function. The techniques are based on measurements of side-scattered light generated by a steerable ultraviolet laser and collected by an optical detector designed to measure fluorescence light from cosmic-ray air showers. We also present a technique to cross-check the aerosol optical depth measurement using air showers observed in stereo. These methods can be used by future air fluorescence experiments.Comment: Accepted for publication in Astroparticle Physics Journal 16 pages, 9 figure

    Randomizing world trade. II. A weighted network analysis

    Get PDF
    Based on the misleading expectation that weighted network properties always offer a more complete description than purely topological ones, current economic models of the International Trade Network (ITN) generally aim at explaining local weighted properties, not local binary ones. Here we complement our analysis of the binary projections of the ITN by considering its weighted representations. We show that, unlike the binary case, all possible weighted representations of the ITN (directed/undirected, aggregated/disaggregated) cannot be traced back to local country-specific properties, which are therefore of limited informativeness. Our two papers show that traditional macroeconomic approaches systematically fail to capture the key properties of the ITN. In the binary case, they do not focus on the degree sequence and hence cannot characterize or replicate higher-order properties. In the weighted case, they generally focus on the strength sequence, but the knowledge of the latter is not enough in order to understand or reproduce indirect effects.Comment: See also the companion paper (Part I): arXiv:1103.1243 [physics.soc-ph], published as Phys. Rev. E 84, 046117 (2011
    corecore