16,970 research outputs found
Comment on Experiments Related to the Aharonov-Bohm Phase Shift
Recent experiments undertaken by Caprez, Barwick, and Batelaan should clarify
the connections between classical and quantum theories in connection with the
Aharonov-Bohm phase shift. It is pointed out that resistive aspects for the
solenoid current carriers play a role in the classical but not the quantum
analysis for the phase shift. The observed absence of a classical lag effect
for a macroscopic solenoid does not yet rule out the possibility of a lag
explanation of the observed phase shift for a microscopic solenoid.Comment: 9 page
The Paradoxical Forces for the Classical Electromagnetic Lag Associated with the Aharonov-Bohm Phase Shift
The classical electromagnetic lag assocated with the Aharonov-Bohm phase
shift is obtained by using a Darwin-Lagrangian analysis similar to that given
by Coleman and Van Vleck to identify the puzzling forces of the Shockley-James
paradox. The classical forces cause changes in particle velocities and so
produce a relative lag leading to the same phase shift as predicted by Aharonov
and Bohm and observed in experiments. An experiment is proposed to test for
this lag aspect implied by the classical analysis but not present in the
currently-accepted quantum topological description of the phase shift.Comment: 8 pages, 3 figure
Elements of Design for Containers and Solutions in the LinBox Library
We describe in this paper new design techniques used in the \cpp exact linear
algebra library \linbox, intended to make the library safer and easier to use,
while keeping it generic and efficient. First, we review the new simplified
structure for containers, based on our \emph{founding scope allocation} model.
We explain design choices and their impact on coding: unification of our matrix
classes, clearer model for matrices and submatrices, \etc Then we present a
variation of the \emph{strategy} design pattern that is comprised of a
controller--plugin system: the controller (solution) chooses among plug-ins
(algorithms) that always call back the controllers for subtasks. We give
examples using the solution \mul. Finally we present a benchmark architecture
that serves two purposes: Providing the user with easier ways to produce
graphs; Creating a framework for automatically tuning the library and
supporting regression testing.Comment: 8 pages, 4th International Congress on Mathematical Software, Seoul :
Korea, Republic Of (2014
The Blackbody Radiation Spectrum Follows from Zero-Point Radiation and the Structure of Relativistic Spacetime in Classical Physics
The analysis of this article is entirely within classical physics. Any
attempt to describe nature within classical physics requires the presence of
Lorentz-invariant classical electromagnetic zero-point radiation so as to
account for the Casimir forces between parallel conducting plates at low
temperatures. Furthermore, conformal symmetry carries solutions of Maxwell's
equations into solutions. In an inertial frame, conformal symmetry leaves
zero-point radiation invariant and does not connect it to non-zero-temperature;
time-dilating conformal transformations carry the Lorentz-invariant zero-point
radiation spectrum into zero-point radiation and carry the thermal radiation
spectrum at non-zero temperature into thermal radiation at a different
non-zero-temperature. However, in a non-inertial frame, a time-dilating
conformal transformation carries classical zero-point radiation into thermal
radiation at a finite non-zero-temperature. By taking the no-acceleration
limit, one can obtain the Planck radiation spectrum for blackbody radiation in
an inertial frame from the thermal radiation spectrum in an accelerating frame.
Here this connection between zero-point radiation and thermal radiation is
illustrated for a scalar radiation field in a Rindler frame undergoing
relativistic uniform proper acceleration through flat spacetime in two
spacetime dimensions. The analysis indicates that the Planck radiation spectrum
for thermal radiation follows from zero-point radiation and the structure of
relativistic spacetime in classical physics.Comment: 21 page
Derivation of the Blackbody Radiation Spectrum from a Natural Maximum-Entropy Principle Involving Casimir Energies and Zero-Point Radiation
By numerical calculation, the Planck spectrum with zero-point radiation is
shown to satisfy a natural maximum-entropy principle whereas alternative
choices of spectra do not. Specifically, if we consider a set of
conducting-walled boxes, each with a partition placed at a different location
in the box, so that across the collection of boxes the partitions are uniformly
spaced across the volume, then the Planck spectrum correspond to that spectrum
of random radiation (having constant energy kT per normal mode at low
frequencies and zero-point energy (1/2)hw per normal mode at high frequencies)
which gives maximum uniformity across the collection of boxes for the radiation
energy per box. The analysis involves Casimir energies and zero-point radiation
which do not usually appear in thermodynamic analyses. For simplicity, the
analysis is presented for waves in one space dimension.Comment: 11 page
Self-organization, scaling and collapse in a coupled automaton model of foragers and vegetation resources with seed dispersal
We introduce a model of traveling agents ({\it e.g.} frugivorous animals) who
feed on randomly located vegetation patches and disperse their seeds, thus
modifying the spatial distribution of resources in the long term. It is assumed
that the survival probability of a seed increases with the distance to the
parent patch and decreases with the size of the colonized patch. In turn, the
foraging agents use a deterministic strategy with memory, that makes them visit
the largest possible patches accessible within minimal travelling distances.
The combination of these interactions produce complex spatio-temporal patterns.
If the patches have a small initial size, the vegetation total mass (biomass)
increases with time and reaches a maximum corresponding to a self-organized
critical state with power-law distributed patch sizes and L\'evy-like movement
patterns for the foragers. However, this state collapses as the biomass sharply
decreases to reach a noisy stationary regime characterized by corrections to
scaling. In systems with low plant competition, the efficiency of the foraging
rules leads to the formation of heterogeneous vegetation patterns with
frequency spectra, and contributes, rather counter-intuitively,
to lower the biomass levels.Comment: 11 pages, 5 figure
Some Heuristic Semiclassical Derivations of the Planck Length, the Hawking Effect and the Unruh Effect
The formulae for Planck length, Hawking temperature and Unruh-Davies
temperature are derived by using only laws of classical physics together with
the Heisenberg principle. Besides, it is shown how the Hawking relation can be
deduced from the Unruh relation by means of the principle of equivalence; the
deep link between Hawking effect and Unruh effect is in this way clarified.Comment: LaTex file, 6 pages, no figure
Understanding the production of dual BEC with sympathetic cooling
We show, both experimentally and theoretically, that sympathetic cooling of
Rb atoms in the state by evaporatively cooled atoms in the
state can be precisely controlled to produce dual or single
condensate in either state. We also study the thermalization rate between two
species. Our model renders a quantitative account of the observed role of the
overlap between the two clouds and points out that sympathetic cooling becomes
inefficient when the masses are very different. Our calculation also yields an
analytical expression of the thermalization rate for a single species.Comment: 3 figure
- …