50 research outputs found

    Cyclic Ruthenium-Alkylidene Catalysts for Ring-Expansion Metathesis Polymerization

    Get PDF
    A series of cyclic Ru-alkylidene catalysts have been prepared and evaluated for their efficiency in ring-expansion metathesis polymerization (REMP). The catalyst structures feature chelating tethers extending from one N-atom of an N-heterocyclic carbene (NHC) ligand to the Ru metal center. The catalyst design is modular in nature, which provided access to Ru complexes having varying tether lengths, as well as electronically different NHC ligands. Structural impacts of the tether length were unveiled through 1H NMR spectroscopy as well as single-crystal X-ray analyses. Catalyst activities were evaluated via polymerization of cyclooctene, and key data are provided regarding propagation rates, intramolecular chain transfer, and catalyst stabilities, three areas necessary for the efficient synthesis of cyclic poly(olefin)s via REMP. From these studies, it was determined that while increasing the tether length of the catalyst leads to enhanced rates of polymerization, shorter tethers were found to facilitate intramolecular chain transfer and release of catalyst from the polymer. Electronic modification of the NHC via backbone saturation was found to enhance polymerization rates to a greater extent than did homologation of the tether. Overall, cyclic Ru complexes bearing 5- or 6-carbon tethers and saturated NHC ligands were found to be readily synthesized, bench-stable, and highly active catalysts for REMP

    Ring-Expansion Metathesis Polymerization: Catalyst-Dependent Polymerization Profiles

    Get PDF
    Ring-expansion metathesis polymerization (REMP) mediated by recently developed cyclic Ru catalysts has been studied in detail with a focus on the polymer products obtained under varied reaction conditions and catalyst architectures. Depending upon the nature of the catalyst structure, two distinct molecular weight evolutions were observed. Polymerization conducted with catalysts bearing six-carbon tethers displayed rapid polymer molecular weight growth which reached a maximum value at ca. 70% monomer conversion, resembling a chain-growth polymerization mechanism. In contrast, five-carbon-tethered catalysts led to molecular weight growth that resembled a step-growth mechanism with a steep increase occurring only after 95% monomer conversion. The underlying reason for these mechanistic differences appeared to be ready release of five-carbon-tethered catalysts from growing polymer rings, which competed significantly with propagation. Owing to reversible chain transfer and the lack of end groups in REMP, the final molecular weights of cyclic polymers was controlled by thermodynamic equilibria. Large ring sizes in the range of 60−120 kDa were observed at equilibrium for polycyclooctene and polycyclododecatriene, which were found to be independent of catalyst structure and initial monomer/catalyst ratio. While six-carbon-tethered catalysts were slowly incorporated into the formed cyclic polymer, the incorporation of five-carbon-tethered catalysts was minimal, as revealed by ICP-MS. Further polymer analysis was conducted using melt-state magic-angle spinning ^(13)C NMR spectroscopy of both linear and cyclic polymers, which revealed little or no chain ends for the latter topology

    Synthesis and Direct Imaging of Ultrahigh Molecular Weight Cyclic Brush Polymers

    Get PDF
    Convenient route to cyclic polymers: Ultrahigh molecular weight cyclic brush polymers were synthesized through ring-expansion metathesis polymerization of various macromonomers. Atomic force microscopy was used to visualize toroidal shapes and large opening pores, along with linear chains, which may result from high sensitivity of brush polymers to mechanical degradation

    A direct route to cyclic organic nanostructures via ring-expansion metathesis polymerization of a dendronized macromonomer

    Get PDF
    Cyclic organic nanostructures were prepared via ring-expansion metathesis polymerization of a dendronized norbornene macromonomer. The strategy provides a direct, efficient route to nanoscale rings in a single operation. AFM imaging confirmed toroidal features having diameters of ca. 35−40 nm

    Dependence of the kinetic energy absorption capacity of bistable mechanical metamaterials on impactor mass and velocity

    Full text link
    Using an alternative mechanism to dissipation or scattering, bistable structures and mechanical metamaterials have shown promise for mitigating the detrimental effects of impact by reversibly locking energy into strained material. Herein, we extend prior works on impact absorption via bistable metamaterials to computationally explore the dependence of kinetic energy transmission on the velocity and mass of the impactor, with strain rates exceeding 10210^2 s1^{-1}. We observe a large dependence on both impactor parameters, ranging from significantly better to worse performance than a comparative linear material. We then correlate the variability in performance to solitary wave formation in the system and give analytical estimates of idealized energy absorption capacity under dynamic loading. In addition, we find a significant dependence on damping accompanied by a qualitative difference in solitary wave propagation within the system. The complex dynamics revealed in this study offer potential future guidance for the application of bistable metamaterials to applications including human and engineered system shock and impact protection devices

    Chemical advances in additive manufacturing

    No full text

    Bis(imidazolylidene)s as modular building blocks for monomeric and macromolecular organometallic materials

    No full text
    The synthetic and structural progression surrounding N-heterocyclic carbenes has given rise to great functional and architectural diversity in organometallic chemistry, catalysis, and materials science. The development of new, modular scaffolds for bridging transition metals is essential in order to expand the boundaries of these scientific areas. This Frontier article summarizes recent advances in the synthesis and study of ditopic ligands displaying two linearly opposed carbene moieties and emphasizes their versatility in the preparation of new organometallic and macromolecular materials. The conclusion previews their utility in conjugated organic/inorganic hybrid materials with potential applications in the emerging fields of molecular- and nanoelectronics

    An alternative synthesis of benzobis(imidazolium) salts via a 'one-pot' cyclization/oxidation reaction sequence

    No full text
    Cyclization of N-aryl and N-alkyl 2,5-diamino-1,4-benzoquinonediimines using paraformaldehyde under acidic conditions followed by oxidation with catalytic amounts of Pd(OAc)(2) afforded their respective benzobis(imidazolium) salts in yields of 48-98%. A comparative solid-state study between a 2,5-diamino-1,4-benzoquinonediimine and its corresponding benzobis(imidazolium) dichloride was also performed

    Ionic liquids via efficient, solvent-free anion metathesis

    No full text
    A range of electrophilic reagents have been found to facilitate simultaneous halide-trapping/anion metathesis of halidecontaining salts in the absence of solvent to afford ionic liquids bearing non-nucleophilic, non-coordinating anions

    Main-chain organometallic polymers: synthetic strategies, applications, and perspectives

    No full text
    Main-chain organometallic polymers utilize transition metal-organic ligand complexes as primary components of their backbones. These hybrid materials effectively integrate the physical and electronic properties of organic polymers with the physical, electronic, optical, and catalytic properties of organometallic complexes. Combined with the rich and continuously growing array of ligands for transition metals, these materials have outstanding potential for use in a broad range of applications. This tutorial review discusses the major classes of main-chain organometallic polymers, including coordination polymers, poly(metal acetylide)s, and poly( metallocene) s. Emphasis is placed on their synthesis, characterization, physical properties, and applications, as well as ongoing challenges and limitations. These discussions are supplemented with highlights from the recent literature. The review concludes with perspectives on the current status of the field, as well as opportunities that lie just beyond its frontier
    corecore