16,151 research outputs found
Characteristics of high quality ZnO thin films deposited by pulsed laser deposition
This paper show that under optimized deposition condition, films can be grown having a full width at half maximum (FWHM) value of the (002) x-ray diffraction (XRD) line a factor of 4 smaller than the previously published results using PLD and among the best reported so far by any technique. Under optimized conditions, c-axis oriented ZnO films having a FWHM value of the (002) XRD reflection line less than 15°, electrical resistivities around 5 × 10-2 Ω cm and optical transmittance higher than 85% in the visible region of the spectrum were obtained. Refractive index was around 1.98 and the Eg = 3.26 eV, values characteristic of very high quality ZnO thin films
Growth of ZnO thin films on GaAs by pulsed laser deposition
ZnO thin films have been grown on GaAs substrates using the pulsed laser deposition technique with or without a photodeposited SiO2 buffer layer. The presence of the SiO2 layer has a beneficial effect on the crystalline quality of the grown ZnO films. Highly c-axis oriented ZnO films having a full width at half maximum value of the (002) X-ray diffraction line of less than 0.13 ° have been grown on such buffer layers at a substrate temperature of only 350 °C
Raman gain against a background of non-thermal ion fluctuations in a plasma
A complex stimulated Raman scattering event against a background of non-thermal ion acoustic waves in an inhomogeneous plasma is described. We obtain analytic forms for the Raman gain due to a five-wave interaction consisting of conventional three-wave Raman scattering followed by the decay of the Raman Langmuir wave into a second Langmuir wave (or a second scattered light wave) and an ion acoustic wave. Very modest levels of ion waves produce a. significant effect on Raman convective gain. A combination of plasma inhomogeneity and suprathermal ion fluctuations may offer a means for the control of Raman gain
Analytical model of brittle destruction based on hypothesis of scale similarity
The size distribution of dust particles in nuclear fusion devices is close to
the power function. A function of this kind can be the result of brittle
destruction. From the similarity assumption it follows that the size
distribution obeys the power law with the exponent between -4 and -1. The model
of destruction has much in common with the fractal theory. The power exponent
can be expressed in terms of the fractal dimension. Reasonable assumptions on
the shape of fragments concretize the power exponent, and vice versa possible
destruction laws can be inferred on the basis of measured size distributions.Comment: 10 pages, 3 figure
Effects of laser wavelength and fluence on the growth of ZnO thin films by pulsed laser deposition
Transparent, electrically conductive and c-axis oriented ZnO thin films have been grown by the pulsed laser deposition (PLD) technique on silicon and Corning glass substrates employing either a KrF excimer laser (¿ = 248 nm) or a frequency-doubled Nd:YAG laser (¿ = 532 nm). The crystalline structure, surface morphology, optical and electrical properties of the deposited films were found to depend not only on the substrate temperature and oxygen partial pressure, but also on the irradiation conditions. The quality of the ZnO layers grown by the shorter wavelength laser was always better than that of the layers grown by the longer wavelength, under otherwise identical deposition conditions. This behaviour was qualitatively accounted for by the results of the numerical solution of a one-dimensional heat diffusion equation which indicated a strong superheating effect of the melted target material for the case of frequency-doubled Nd:YAG laser irradiations. By optimizing the deposition conditions we have grown, employing the KrF laser, very smooth c-axis oriented ZnO films having a full-width at half-maximum value of the (002) X-ray diffraction value less than 0.16° and optical transmittance around 85% in the visible region of the spectrum at a substrate temperature of only 300°C
Anomalous diffusion, clustering, and pinch of impurities in plasma edge turbulence
The turbulent transport of impurity particles in plasma edge turbulence is
investigated. The impurities are modeled as a passive fluid advected by the
electric and polarization drifts, while the ambient plasma turbulence is
modeled using the two-dimensional Hasegawa--Wakatani paradigm for resistive
drift-wave turbulence. The features of the turbulent transport of impurities
are investigated by numerical simulations using a novel code that applies
semi-Lagrangian pseudospectral schemes. The diffusive character of the
turbulent transport of ideal impurities is demonstrated by relative-diffusion
analysis of the evolution of impurity puffs. Additional effects appear for
inertial impurities as a consequence of compressibility. First, the density of
inertial impurities is found to correlate with the vorticity of the electric
drift velocity, that is, impurities cluster in vortices of a precise
orientation determined by the charge of the impurity particles. Second, a
radial pinch scaling linearly with the mass--charge ratio of the impurities is
discovered. Theoretical explanation for these observations is obtained by
analysis of the model equations.Comment: This article has been submitted to Physics of Plasmas. After it is
published, it will be found at http://pop.aip.org/pop
A note on Burgers' turbulence
In this note the Polyakov equation [Phys. Rev. E {\bf 52} (1995) 6183] for
the velocity-difference PDF, with the exciting force correlation function
is analyzed. Several solvable cases are
considered, which are in a good agreement with available numerical results.
Then it is shown how the method developed by A. Polyakov can be applied to
turbulence with short-scale-correlated forces, a situation considered in models
of self-organized criticality.Comment: 11 pages, Late
Ginzburg-Landau equation bound to the metal-dielectric interface and transverse nonlinear optics with amplified plasmon polaritons
Using a multiple-scale asymptotic approach, we have derived the complex cubic
Ginzburg-Landau equation for amplified and nonlinearly saturated surface
plasmon polaritons propagating and diffracting along a metal-dielectric
interface. An important feature of our method is that it explicitly accounts
for nonlinear terms in the boundary conditions, which are critical for a
correct description of nonlinear surface waves. Using our model we have
analyzed filamentation and discussed bright and dark spatially localized
structures of plasmons.Comment: http://link.aps.org/doi/10.1103/PhysRevA.81.03385
Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal
We show that Coherent Population Oscillations effect allows to burn a narrow
spectral hole (26Hz) within the homogeneous absorption line of the optical
transition of an Erbium ion-doped crystal. The large dispersion of the index of
refraction associated with this hole permits to achieve a group velocity as low
as 2.7m/s with a ransmission of 40%. We especially benefit from the
inhomogeneous absorption broadening of the ions to tune both the transmission
coefficient, from 40% to 90%, and the light group velocity from 2.7m/s to
100m/s
- …