5,212 research outputs found
Cratering history of Miranda
The surface of the southern hemisphere of Miranda imaged by Voyager 2 is divisible into two general types of terrain: cratered terrain, characterized by numerous craters and undulating intercrater plains; and basins, circular to rectangular areas of complex morphology having large-scale albedo markings. To determine the relative ages of the terrains and the length of geological activity, crater-frequency data were compiled for various parts of the cratered terrain and basins. Crater-frequency data indicate that the cratered terrain is the oldest terrain on Miranda and that it was locally resurfaced
Geology and cratering history of Ariel
The surface of Ariel imaged by Voyager 2 can be divided into several types of terrain on the basis of morphology: cratered terrain, subdued terrain, ridged terrain, and plains. Crater statistics were compiled for each of the terrain types. Despite differing morphology, the various terrains on Ariel do not exhibit large variations in crater frequency. None of the observed surfaces on Ariel record the period of accretion. It seems that conditions appropriate for resurfacing could have occurred during the early history of Ariel
Electromagnetic response of high-Tc superconductors -- the slave-boson and doped-carrier theories
We evaluate the doping dependence of the quasiparticle current and low
temperature superfluid density in two slave-particle theories of the tt't''J
model -- the slave-boson theory and doped-carrier theory. In the slave-boson
theory, the nodal quasiparticle current renormalization factor
vanishes proportionally to the zero temperature superfluid density ;
however, we find that away from the limit displays a
much weaker doping dependence than . A similar conclusion applies to
the doped-carrier theory, which differentiates the nodal and antinodal regions
of momentum space. Due to its momentum space anisotropy, the doped-carrier
theory enhances the value of in the hole doped regime, bringing it to
quantitative agreement with experiments, and reproduces the asymmetry between
hole and electron doped cuprate superconductors. Finally, we use the
doped-carrier theory to predict a specific experimental signature of local
staggered spin correlations in doped Mott insulator superconductors which, we
propose, should be observed in STM measurements of underdoped high-Tc
compounds. This experimental signature distinguishes the doped-carrier theory
from other candidate mean-field theories of high-Tc superconductors, like the
slave-boson theory and the conventional BCS theory.Comment: 12 pages, RevTeX4, homepage http://dao.mit.edu/~we
Separation of biological materials in microgravity
Partition in aqueous two phase polymer systems is a potentially useful procedure in downstream processing of both molecular and particulate biomaterials. The potential efficiency of the process for particle and cell isolations is much higher than the useful levels already achieved. Space provides a unique environment in which to test the hypothesis that convection and settling phenomena degrade the performance of the partition process. The initial space experiment in a series of tests of this hypothesis is described
New Experimental limit on Optical Photon Coupling to Neutral, Scalar Bosons
We report on the first results of a sensitive search for scalar coupling of
photons to a light neutral boson in the mass range of approximately 1.0
milli-electron volts and coupling strength greater than 10 GeV using
optical photons. This was a photon regeneration experiment using the "light
shining through a wall" technique in which laser light was passed through a
strong magnetic field upstream of an optical beam dump; regenerated laser light
was then searched for downstream of a second magnetic field region optically
shielded from the former. Our results show no evidence for scalar coupling in
this region of parameter space.Comment: pdf-file, 10 pages, 4 figures, submitted to Physical Review Letter
Sequence stratigraphical and palaeoenvironmental implications of Cenomanian–Santonian dinocyst assemblages from the Trans¬-Sahara epicontinental seaway : a multivariate statistical approach.
ACKNOWLEDGEMENTS M.B. Usman thanks the Petroleum Technology Development Fund (PTDF) for funding this research at the University of Aberdeen. The editor and reviewer are also thanked for their corrections which improved the manuscript. We also acknowledge Stephen Ingram, Adamu Kimayim Gaduwang and Solomon Abafras for their contributions.Peer reviewedPublisher PD
Synchronization in small-world systems
We quantify the dynamical implications of the small-world phenomenon. We
consider the generic synchronization of oscillator networks of arbitrary
topology, and link the linear stability of the synchronous state to an
algebraic condition of the Laplacian of the graph. We show numerically that the
addition of random shortcuts produces improved network synchronizability.
Further, we use a perturbation analysis to place the synchronization threshold
in relation to the boundaries of the small-world region. Our results also show
that small-worlds synchronize as efficiently as random graphs and hypercubes,
and more so than standard constructive graphs
- …