177 research outputs found

    No audible wheezing: nuggets and conundrums from mouse asthma models

    Get PDF
    Mouse models of T helper type 2 (Th2) cell–biased pulmonary inflammation have elucidated mechanisms of sensitization, cell traffic, and induced airway hyperresponsiveness (AHR). Nonetheless, most mice lack intrinsic AHR, a central property of human asthma, and disparities persist regarding the contributions of eosinophils and mast cells and the sensitivity to induced AHR in the commonly used mouse strains. We suggest that these discordances, reflecting methodological and genetic differences, may be informative for understanding heterogeneity of human asthma

    Differential Regulation of Cysteinyl Leukotriene Receptor Signaling by Protein Kinase C in Human Mast Cells

    Get PDF
    Cysteinyl leukotrienes (cys-LTs) are a group of lipid mediators that are potent bronchoconstrictors, powerful inducers of vascular leakage and potentiators of airway hyperresponsiveness. Cys-LTs play an essential role in asthma and are synthesized as well as activated in mast cells (MCs). Cys-LTs relay their effects mainly through two known GPCRs, CysLT1R and CysLT2R. Although protein kinase C (PKC) isoforms are implicated in the regulation of CysLT1R function, neither the role of PKCs in cys-LT-dependent MC inflammatory signaling nor the involvement of specific isoforms in MC function are known. Here, we show that PKC inhibition augmented LTD4 and LTE4-induced calcium influx through CysLT1R in MCs. In contrast, inhibition of PKCs suppressed c-fos expression as well MIP1β generation by cys-LTs. Interestingly, cys-LTs activated both PKCα and PKCε isoforms in MC. However, knockdown of PKCα augmented cys-LT mediated calcium flux, while knockdown of PKCε attenuated cys-LT induced c-fos expression and MIP1β generation. Taken together, these results demonstrate for the first time that cys-LT signaling downstream of CysLT1R in MCs is differentially regulated by two distinct PKCs which modulate inflammatory signals that have significant pathobiologic implications in allergic reactions and asthma pathology

    Impact of botanical oils on polyunsaturated fatty acid metabolism and leukotriene generation in mild asthmatics

    Get PDF
    Background: Dietary supplementation with botanical oils that contain n-6 and n-3 eighteen carbon chain (18C)-PUFA such as γ linolenic acid (GLA, 18:3n-6), stearidonic acid (SDA, 18:4n-3) and α linolenic acid (ALA, 18:3n-3) have been shown to impact PUFA metabolism, alter inflammatory processes including arachidonic acid (AA) metabolism and improve inflammatory disorders. Methods: The diet of mild asthmatics patients was supplemented for three weeks with varying doses of two botanical seed oils (borage oil [Borago officinalis, BO] and echium seed oil [Echium plantagineum; EO]) that contain SDA, ALA and GLA. A three week wash out period followed. The impact of these dietary manipulations was evaluated for several biochemical endpoints, including in vivo PUFA metabolism and ex vivo leukotriene generation from stimulated leukocytes. Results: Supplementation with several EO/BO combinations increased circulating 20–22 carbon (20–22C) PUFAs, including eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and dihommo-gammalinolenic acid (DGLA), which have been shown to inhibit AA metabolism and inflammation without impacting circulating AA levels. BO/EO combinations also inhibited ex vivo leukotriene generation with some combinations attenuating cysteinyl leukotriene generation in stimulated basophils by >50% and in stimulated neutrophils by >35%. Conclusions: This study shows that dietary supplementation with BO/EO alters 20–22C PUFA levels and attenuates leukotriene production in a manner consistent with a reduction in inflammation

    Target-Based Identification of Whole-Cell Active Inhibitors of Biotin Biosynthesis in Mycobacterium tuberculosis

    Get PDF
    SummaryBiotin biosynthesis is essential for survival and persistence of Mycobacterium tuberculosis (Mtb) in vivo. The aminotransferase BioA, which catalyzes the antepenultimate step in the biotin pathway, has been established as a promising target due to its vulnerability to chemical inhibition. We performed high-throughput screening (HTS) employing a fluorescence displacement assay and identified a diverse set of potent inhibitors including many diversity-oriented synthesis (DOS) scaffolds. To efficiently select only hits targeting biotin biosynthesis, we then deployed a whole-cell counterscreen in biotin-free and biotin-containing medium against wild-type Mtb and in parallel with isogenic bioA Mtb strains that possess differential levels of BioA expression. This counterscreen proved crucial to filter out compounds whose whole-cell activity was off target as well as identify hits with weak, but measurable whole-cell activity in BioA-depleted strains. Several of the most promising hits were cocrystallized with BioA to provide a framework for future structure-based drug design efforts

    Target-Based Identification of Whole-Cell Active Inhibitors of Biotin Biosynthesis in Mycobacterium tuberculosis

    Get PDF
    SummaryBiotin biosynthesis is essential for survival and persistence of Mycobacterium tuberculosis (Mtb) in vivo. The aminotransferase BioA, which catalyzes the antepenultimate step in the biotin pathway, has been established as a promising target due to its vulnerability to chemical inhibition. We performed high-throughput screening (HTS) employing a fluorescence displacement assay and identified a diverse set of potent inhibitors including many diversity-oriented synthesis (DOS) scaffolds. To efficiently select only hits targeting biotin biosynthesis, we then deployed a whole-cell counterscreen in biotin-free and biotin-containing medium against wild-type Mtb and in parallel with isogenic bioA Mtb strains that possess differential levels of BioA expression. This counterscreen proved crucial to filter out compounds whose whole-cell activity was off target as well as identify hits with weak, but measurable whole-cell activity in BioA-depleted strains. Several of the most promising hits were cocrystallized with BioA to provide a framework for future structure-based drug design efforts
    • …
    corecore