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SUMMARY

Biotin biosynthesis is essential for survival and
persistence of Mycobacterium tuberculosis (Mtb)
in vivo. The aminotransferase BioA, which catalyzes
the antepenultimate step in the biotin pathway, has
been established as a promising target due to its
vulnerability to chemical inhibition. We performed
high-throughput screening (HTS) employing a fluo-
rescence displacement assay and identified a
diverse set of potent inhibitors including many diver-
sity-oriented synthesis (DOS) scaffolds. To efficiently
select only hits targeting biotin biosynthesis, we then
deployed a whole-cell counterscreen in biotin-free
and biotin-containing medium against wild-type
Mtb and in parallel with isogenic bioA Mtb strains
that possess differential levels of BioA expression.
This counterscreen proved crucial to filter out com-
pounds whose whole-cell activity was off target as
well as identify hits with weak, but measurable
whole-cell activity in BioA-depleted strains. Several
of the most promising hits were cocrystallized with
BioA to provide a framework for future structure-
based drug design efforts.

INTRODUCTION

Tuberculosis (TB) is an infectious disease caused byMycobacte-

rium tuberculosis (Mtb) and related species that is most

commonly observed as a chronic pulmonary infection (World

Health Organization (WHO), 2013). TB, once the leading cause

of infectious disease mortality, was nearly eradicated from

industrialized nations in the 20th century through a combination

of public health measures and the introduction of antibiotics

(Centers for Disease Control and Prevention (CDC), 1999). How-

ever, the emergence of HIV that sensitizes latently TB-infected

individuals and the inevitable development of drug-resistant
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TB strains through use of the same antibiotics for more than

50 years has led to a dramatic worldwide rise in TB mortality,

which prompted the WHO to declare TB a global public health

emergency. Current efforts to bring TB under control are focused

on development of new antibiotics, improved diagnostics, and

vaccines (NIH, 2014). Ultimately, success in each area is

required to control TB.

The development of new antibiotics for TB traditionally has

been performed by empirically screening compound collections

and natural product extracts for in vitro antitubercular whole-cell

activity without any a priori knowledge of their mechanism of

action (MOA) (Aldrich et al., 2010; Marriner et al., 2011). Strepto-

mycin, the very first antibiotic effective against Mtb discovered

by Albert Schatz in Selman Waksman’s laboratory at Rutgers

in 1943, and bedaquiline, the newest TB drug developed by

Koen Andries’ team at Janssen Pharmaceuticals and approved

by the FDA for multidrug-resistant-TB in 2012, were discovered

in this manner (Andries et al., 2005; Schatz et al., 1944). An

inverse and potentially more intellectually appealing strategy

for antibiotic discovery is to identify a target essential for growth

(or survival) of the pathogen by comparative genomics and

metabolic-pathway analysis and then search for an inhibitor.

Target-based approaches have been immensely successful

for antiviral drug discovery; however, they have been much

less effective in the antibacterial arena for many reasons (Gopal

and Dick, 2014; Payne et al., 2007; Silver, 2011). One of the most

significant challenges has been the inability to translate potent

biochemical activity into whole-cell antibacterial activity. More-

over, many compounds with cell-based activity that were

identified with biochemical assays may be found later to not

act through inhibition of the intended target. To overcome

these limitations, target-based whole-cell screening (TBWCS),

which combines the specificity of biochemical target-based

approaches with the practical advantages of whole-cell

phenotypic screens to identify cell-permeable target-directed

compounds, has been developed (DeVito et al., 2002; Forsyth

et al., 2002; Young et al., 2006). In this approach, a target is

differentially expressed in the bacterial cell, which potentially

sensitizes the biochemical pathway to inhibition, and counter-

screening enables one to deselect compounds that retain
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Figure 1. The Biotin Biosynthetic Pathway in Mtb

The biochemical pathway for biotin synthesis in analogy to the pathway in Escherichia coli is expected to proceed by methylation of malonyl-ACP 1 to the

corresponding methyl ester 2 by BioC, which allows it to enter the fatty acid synthesis pathway (FAS-II) where it undergoes two rounds of extension to pimeloyl-

ACPmethyl ester 3 (Lin et al., 2010; Shapiro et al., 2012). Hydrolysis of the methyl ester 3 by BioH is expected to furnish pimeloyl-ACP 4. Next BioF catalyzes the

decarboxylative condensation of pimeloyl-ACP 4 with alanine to furnish KAPA 5. Reductive amination of KAPA to DAPA 6 is performed by the PLP-dependent

aminotransferase BioA. Carboxylation of DAPA 6 to dethiobiotin 7 mediated by BioD followed by C-H activation and sulfur insertion by BioB affords biotin 8.
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activity presumably through alternate mechanisms. These stra-

tegies have been used successfully to identify new antibacterials

for Gram-positive bacteria (Phillips et al., 2011; Wang et al.,

2006) and recently were applied for the first time to Mtb (Abra-

hams et al., 2012).

We have genetically validated biotin biosynthesis as a prom-

ising pathway in Mtb that is essential for replication and persis-

tence in vivo (Park et al., 2011). The biotin pathway is absent in

higher organisms; thus, inhibitors of this pathway are expected

to be intrinsically selective. BioA is a 50-pyridoxal phosphate
(PLP)-dependent aminotransferase that is responsible for the

antepenultimate step of biotin biosynthesis (Figure 1), and it cat-

alyzes the reductive amination of 7-keto-8-aminopelaragonic

acid (KAPA, 5) to 7,8-diaminopelargonic acid (DAPA, 6), uniquely

employing S-adenosyl-L-methionine (SAM) as the amino donor

(Mann et al., 2009; Mann and Ploux, 2006, 2011). The natural

product antibiotic amiclenomycin disrupts biotin metabolism

in Mtb through inhibition of BioA and possesses remarkably

selective antimycobacterial activity, thereby providing chemical

validation for this pathway (Kitahara et al., 1975; Sandmark

et al., 2002). However, the chemical instability and highly polar

nature of this compound precludes its use in vivo (Shi et al.,

2011). The chemical precedence provided by amiclenomycin in

conjunction with our successful fragment-screening campaign

supports the vulnerability of Mtb to chemical inhibition of BioA

(Dai et al., 2014; Edfeldt et al., 2011).

Herein we report the identification of potent BioA inhibitors by

screening the Molecular Libraries Small Molecules Repository

(MLSMR) compound collection of more than 350,000 com-
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pounds using an innovative screening approach. A major chal-

lenge in hit discovery programs with biochemical assays is

selecting compounds for further development, since a typical

hit rate of 0.1%–0.3% on a library of this size can provide

hundreds to thousands of confirmed hits with low micromolar

activity. To rapidly identify compounds that operate through

the desired MOA, we used a whole-cell counterscreen with

wild-type (WT) Mtb in biotin-free and biotin-containing medium

as well as BioA under- and overexpressing Mtb strains. Integra-

tion of the resulting whole-cell activity profiles enabled rapid

selection of compounds with BioA-specific whole-cell activity.

Moreover, the susceptible BioA-depleted Mtb strain allowed

identification of compounds with modest, on-target whole-cell

activity that would have been missed by enlisting only a WT

Mtb strain. Several of the most promising scaffolds were

cocrystallized with BioA and provide a foundation for future

structure-based drug design studies.

RESULTS

Continuous Coupled Assay
To identify BioA inhibitors, we used a coupled assay under initial

velocity conditions as shown in Figure 2, wherein the BioA prod-

uct DAPA was converted into dethiobiotin by BioD (Mann et al.,

2013; Wilson et al., 2011). The BioA substrates KAPA and

SAM were held at 3 mM and 0.75 mM, respectively, which is

near their KM values, to provide balanced assay conditions

(Copeland, 2000). Additionally, we used 1 mM dithiothreitol

(DTT) to prevent false positives caused by thiol-reactive
76–86, January 22, 2015 ª2015 Elsevier Ltd All rights reserved 77



Figure 2. Overview of the Coupled Fluorescent Displacement Assay to Measure BioA Activity

BioA catalyzes the reversible transamination of KAPA 5 to DAPA 6, which is converted by BioD to dethiobiotin 7. Displacement of the fluorescently labeled

dethiobiotin tracer 9 from streptavidin by the generated dethiobiotin 7 relieves the fluorescent quenching of 9 due to the tryptophan-rich environment of

streptavidin (W79, W92, W108, and W120). The depicted binding of streptavidin to 7 and 9 does not accurately portray the molecular interactions. Streptavidin

can bind four molecules of dethiobiotin 7 in each of the four equivalent biotin-binding sites of the homotetramer, while the dethiobiotin and the fluorescein moities

of 9 are predicted to each occupy one of the four equivalent biotin-binding sites (Wilson et al., 2011).
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molecules and 0.0025% Igepal CA630, a nonionic detergent, to

impede nonspecific inhibitor aggregation (McGovern et al.,

2003). The use of BioD drives the overall reaction forward since

the aminotransferase reaction is reversible. Detection of dethio-

biotin was achieved with streptavidin and a fluorescently labeled

tracer that we developed, whose fluorescence quenching is

relieved upon displacement by dethiobiotin (Wilson et al.,

2011). Termination of the assay was accomplished by the addi-

tion of a 500 mM EDTA solution, which chelates the Mg2+

cofactor required for BioD activity.

Assay Screen
The assay was miniaturized to a 7.5 ml 1,536-well format where it

performed with a calculated Z0 factor of 0.825 ± 0.103, which is

a measure of assay robustness (Zhang et al., 1999). Screening

was performed in duplicate at a single concentration of 10 mM

against the MLSMR collection of 356,486 diverse compounds

(PubChem AID 602481). Notably, this library includes 83,000

compounds from the diversity-oriented synthesis (DOS) com-

pound collection at the Broad Institute. We defined a hit as a

compound showing greater or equal to 40% inhibition, and

342 compounds were active at 10 mM by this criteria, represent-

ing a nominal hit rate of 0.095% (Figure 3). Hits were triaged

to remove most pan assay interference compounds (Baell and

Holloway, 2010), yielding 327 hits of which 312 were available

for retesting. Retesting was performed in an eight-point concen-

tration-response format in triplicate, and 298 of the 312 hits

possessed IC50 values % 20 mM with 55 compounds exceeding

the activity threshold of IC50 % 1 mM, giving a confirmation rate

of 96% (PubChem AID 651683) (see Figure S1 for assay tree,

available online).
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Secondary Assays
Next, all 298 hits were counterscreened in an eight-point dose-

response format against BioD, using the substrate DAPA along

with streptavidin and the fluorescent dethiobiotin tracer to iden-

tify compounds that cause fluorescence interference or inhibit

BioD (PubChem AID 651679). None of the hits showed activity

in the BioD counterscreen (IC50 > 20 mM). Since BioA is a PLP-

dependent aminotransferase and because previous BioA

inhibitors have been shown to covalently bind the PLP cofactor,

we evaluated all compounds against aspartate transaminase

(AST), an ubiquitous and functionally related PLP-dependent

enzyme, to assess potential enzyme selectivity (AID 743184;

Dai et al., 2014; Sandmark et al., 2002; Shi et al., 2011; Zlitni

et al., 2013). All of the hits were inactive against AST, suggesting

they possess a useful level of selectivity. To evaluate the poten-

tial for mammalian cytotoxicity, every hit was then screened

against HepG2 human liver cells, HEK293 human kidney cells,

and NIH 3T3 murine fibroblast cells; none of the 298 hits demon-

strated any cytotoxicity at 20 mM, the maximum compound

concentration evaluated (PubChem AID 651898, AID 651899,

and AID 651900), and all were carried forward for further study.

Scaffold Analysis
Cheminformatic analysis followed by manual culling of the 298

confirmed hits suggested chemical clustering into 65 groups,

of which 34 groups were defined by multiple examples sharing

a common scaffold (Table S1) (Mulrooney et al., 2013). Tetrahy-

droisoquinoline 10, from a DOS library and shown in Table 1, is

the most abundant scaffold (36 analogs), representing nearly

12% of all hits and including the most potent hit identified with

an IC50 value of 75 nM (Gerard et al., 2012). Another interesting
Ltd All rights reserved



A B Figure 3. Summary of Data from All

>350,000 Wells of the Entire MLSMR

Library Screen

(A) Replicate comparison plot of screened com-

pounds. Activity of 0 represents the average of

the DMSO neutral control wells and of �100 the

average of the positive control wells. Compounds

with all replicates passing the �40% activity

score threshold are considered active (blue), those

with the mean of the replicates above �40%

are considered inactive (red), and those with a

mean replicate activity below �40% but with less

than half the replicates passing the threshold are

inconclusive (green).

(B) Mean activities of all replicates for each

compound. Coloring and activity calls are as in (A).

The �40% activity threshold is shown.
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DOS scaffold (6 analogs) is the oxazocane typified by 17 (Gerard

et al., 2013). Several other DOS scaffolds registered as hits

(Table S1), including benzooxathiazocines (Gerard et al., 2011),

monocyclic azetidine nitriles (Lowe et al., 2012), and tricyclic

pyridones (Marcaurelle et al., 2009).

Several other chemotypes were identified with promising bio-

logical activity, among these 5,6-fused bicyclic heteroaromatics

were the third most common scaffold (23 analogs) and pyrazolo

[1,5-a]pyrimidine 11 is shown as an example. The piperidines

(20 analogs) typified by 16, constituted the fourth most populous

scaffold. The N-aryl piperazines, such as 14, represented the

fifth most abundant scaffold (16 analogs). The coumarins, exem-

plified by 7-diethylaminocoumarin 15, were the sixth most abun-

dant scaffold. Additionally, several other small clusters of two

to three compounds demonstrated promising BioA inhibitory

activity with pyrrolothiazolidine-S-oxide 18 and benzimidazole

19 provided as representative molecules. Among the com-

pounds with no clear chemical analogs in the screening libraries

were examples like phthalazinone 12 and 4-(benzothiazol-2-yl)

pentenoic acid 13.

Whole-Cell Evaluation
Representative members of each scaffold were evaluated

against M. tuberculosis H37Rv in biotin-free and biotin-contain-

ing medium to identify compounds with biotin-dependent Mtb

growth inhibitory activity. Additionally, compounds were tested

against an Mtb strain that expresses approximately 20% of

BioA relative to WT Mtb and, therefore, is sensitive to BioA inhi-

bition. This strain was originally described as BioA TetON-5 (Park

et al., 2011) and is referred to here as BioA-underexpressor or

BioA-UE. Select compounds were then screened against an

Mtb strain that expresses approximately 1,200% of BioA relative

to WT Mtb and, thus, should be more resistant to putative BioA

inhibitors. The overexpressor was described as Bio TetON-1

(Park et al., 2011) and is referred to here as BioA-OE. The results

from thesewhole-cell screens allowed prioritization of hits based

on on-target whole-cell activity.

The utility of this approach is illustrated with N-aryl piperazine

14 (Figure 4A), which showed modest activity against WT

Mtb with a minimum inhibitory concentration (MIC) that in-

hibited 90% of growth at 26 mM in biotin-free medium. Addition

of 1 mM biotin to the medium blocked the activity of 14 and

chemically rescued the bacteria. Depletion of BioA in Mtb
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BioA-UE increased susceptibility to 14, yielding an MIC of

9 mM, while BioA overexpression in Mtb BioA-OE conferred

resistance to 14, shifting the MIC to 99 mM. Collectively, these

results are consistent with the desired MOA and present N-aryl

piperazine 14 as a validated hit, which we will report on further

in the future.

In a similar manner, this screening approach can be used to

invalidate hits even though theymay otherwise appear promising

based on their biochemical and whole-cell activity. This is illus-

trated with 4-(benzothiazol-2-yl)pentenoic acid 13, which was

the most potent whole-cell active hit identified with an MIC

against WT Mtb of 2.5 mM in the absence of biotin. However,

the MIC was only modestly shifted (approximately 3-fold) to

8.7 mM upon addition of biotin, suggesting the activity was

largely biotin-independent. Assay of 13 using strains that under-

or overexpressed BioA providedMICs of 0.7 and 4.7 mM, respec-

tively. These MICs were relatively insensitive to BioA levels,

which varied 60-fold between strains BioA-UE and BioA-OE

(Park et al., 2011). Thus, while 4-(benzothiazol-2-yl)pentenoic

acid 13 had promising biochemical activity (IC50 = 153 nM), the

observed whole-cell antimycobacterial activity showed lesser

dependence on exogenous biotin or BioA protein levels,

suggesting that the observed whole-cell activity was primarily

due to off-target effects. Consequently, hit 13 was deprioritized

for further development.

A third set of compounds was also identified from this

screening method as exemplified by pyrrolothiazolidine-S-oxide

18, whose MIC against WT Mtb in biotin-free medium was

greater than 50 mM. Compound 18 showed no observable

growth inhibition in biotin-containing medium or against the

BioA overexpression strain. In most screening work flows this

compound would be discarded. However, activity was revealed

when this compound was evaluated against the sensitive strain

BioA-UE, wherein BioA is depleted relative to WT, providing an

MIC value of 35 mM,whichwarrants further investigation. Several

other hits also demonstrated weak whole-cell activity against

BioA-UE, but are inactive against the other Mtb strains and

growth conditions including pyrazolo[1,5-a]pyrimidine 11, piper-

idine 16, and DOS oxazocane 17 (see Table S1 for all active

compounds).

The majority of the 255 hits showed no activity against

any of theMtb strains, which is in agreement with prior observa-

tions of biochemical screening campaigns (Payne et al., 2007;
76–86, January 22, 2015 ª2015 Elsevier Ltd All rights reserved 79



Table 1. Selected BioA and Mtb Hits

Compound Structure IC50, mM
a

MIC90, mM

BioA-UEb

MIC90, mM

WT -biotinc
MIC90, mM

WT+biotind
MIC90, mM

BioA-OEe

10 0.075 >100 >100 >100 >100

11 0.144 15.1 75.1 >100 57.8

12 0.148 79.3 >100 >100 >100

13 0.153 0.7 2.5 8.7 4.7

14 0.155 9.3 26.3 >100 98.6

15 0.195 5.6 20.7 65.0 77.9

16 0.508 35.0 >100 >100 >100

17 0.596 98.7 >100 >100 >100

18 0.659 34.9 >100 >100 >100

(Continued on next page)
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Table 1. Continued

Compound Structure IC50, mM
a

MIC90, mM

BioA-UEb

MIC90, mM

WT -biotinc
MIC90, mM

WT+biotind
MIC90, mM

BioA-OEe

19 0.788 14.5 46 72.9 39.5

Full data are available in PubChem (go to http://pubchem.ncbi.nlm.nih.gov/# and search under the bioassay tab with the given six-digit AID number).
aIC50 value against Mtb BioA in the described biochemical assay: AID 651683.
bMinimum inhibitory concentration that results in 90% inhibition against the Mtb BioA underexpression strain: AID 743072 and AID 743352.
cMinimum inhibitory concentration that results in 90% inhibition against Mtb H37Rv without supplemental biotin: AID 743070 and AID 743350.
dMinimum inhibitory concentration that results in 90% inhibition against Mtb H37Rv with 1 mM supplemental biotin: AID 743071 and AID 743349.
eMinimum inhibitory concentration that results in 90% inhibition against the Mtb BioA overexpression strain: AID 743073 and AID 743351.
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Silver, 2011), and these hits can be rapidly deprioritized without

expending chemistry-intensive resources.

Structural Characterization
To facilitate future structure-based drug design, seven of the

most promising hits were subjected to cocrystallization with

BioA. Three complex structures were obtained including 7-dieth-

ylaminocoumarin 15, pyrrolothiazolidine-S-oxide 18, and an

N-aryl piperazine 14-Cl, which is otherwise identical to hit

N-aryl piperazine 14 except the dioxolane ring is replaced with

a meta-chloro substituent. Unambiguous electron density af-

firmed that each inhibitor bound in the hydrophobic site adjacent

to the PLP cofactor where substrate KAPA also bound, as shown

in Figure 5 (Dai et al., 2014). This site exists at the interface of

monomers in the BioA heterodimer; inhibitors are in contact

with structural components of both monomers, distinguished

by color in Figures 5A–5C. Each inhibitor induced shifts in the

conformation of side chains of Tyr25 and Trp64 to accommodate

the longer, flatter molecules that lie sandwiched between repo-

sitioned aromatic rings of the tyrosine below and the tryptophan

above.

Interactions between these inhibitors and BioA are primarily

hydrophobic and arise from two subsites. A subsite on the right

(orientation defined by Figure 5) is formed by the juxtaposition of

Pro24 and Trp 64 with residues 910–930 and 3160–3180 (primes

denote residues of the other BioA monomer). The m-fluoro-

phenyl group of 18, the thienyl ketone of 15, and the acetophe-

none group of 14-Cl all lie in this subsite, with the aromatic

groups in planar coincidence. The fluorine of 18 is inserted

most deeply into this subsite, where it is nestled between

Gly093 and Met091. The acetocarbonyl of 14-Cl accepts an

H-bond from the amide NH of Gly093, the only H-bond donor

or acceptor present in this otherwise hydrophobic pocket.

A subsite on the left exists between the side chain of Tyr25,

Tyr157, and the loop formed by Gly172-Met174. The subsite is

capped by Arg403, although none of these inhibitors extend far

enough to achieve direct contact with it. The chlorobenzyl of

14-Cl extends to the limit of this subsite, with the aromatic ring

stacked in what could be a p-p interaction along the flat face

of the peptide bond joining Gly173 and Gly173. Inhibitor 18

is too short to extend into this subsite. One branch of the diethyl-

amine of 15 lies in a similar position, while the other branch
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extends upward toward a niche between Tyr25 and Met174

not occupied by other inhibitors.

Inhibitor 18 is too short to contact the left subsite, but it is

the only inhibitor that extends down to make direct contact

with the PLP. The S-oxide of the pyrrolothiazolidine is positioned

to donate an H-bond to one oxygen of the PLP phosphate and

accept one from the hydroxyl group of Tyr157.

Isothermal Titration Calorimetry
To futher confirm the activity of N-aryl piperazine 14, we

independently synthesized it (see Supplemental Experimental

Procedures) and measured binding to BioA by isothermal titra-

tion calorimetry (ITC) (Figure 6). Consistent with our kinetic

assay, 14 bound BioA tightly with a KD of 110 ± 9 nM in a 1:1

stoichiometry. The affinity was enthalpically driven (DH =

11.8 ± 0.8 kcal/mol) with a small unfavorable entropic compo-

nent (�TDS = +2.8 ± 0.8 kcal/mol).

DISCUSSION

Target-Based Strategies
Reductionist target-based approaches have gained consider-

able notoriety in antibacterial drug discovery because of their

limited success (Payne et al., 2007; Silver, 2011). There are

several potential reasons for the poor outcome of target-based

strategies for antibacterial development, including the challenge

of converting a biochemical inhibitor into a compound that

leads to bacterial accumulation, rapid evolution of resistance

to single targets, and the difficulty of developing broad-spectrum

compounds. With respect to TB, narrow-spectrum agents that

do not affect the commensal microbiota are in fact preferred,

thus removing amajor constraint typically faced by antibiotic dis-

covery programs. The other major concern that has plagued

antibiotic development is the high resistance frequencies of sin-

gle-target agents, but this is less important for diseases like TB

and HIV since combination drug therapy is always employed.

For intracellular cytosolic targets inMtb, which represent thema-

jority of novel targets, the lack of efficacy of potent biochemical

hits generally has been ascribed to a lack of penetration through

the lipophilic cell envelope; however, drug efflux increasingly is

being recognized as a major contributor to intrinsic resistance

to antibiotics in Mtb. As recently demonstrated by Lee and
76–86, January 22, 2015 ª2015 Elsevier Ltd All rights reserved 81
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Figure 4. Whole-Cell Screening

(A–C) Whole-cell screening was performed with 120 compounds in WT Mtb in biotin-free and biotin-containing medium and BioA over- and underexpression

strains, BioA-OE and BioA-UE, respectively. Examples of whole-cell screening with N-aryl piperazine 14 (A), 4-(benzothiazol-2-yl)pentenoic acid 13 (B), and

pyrrolothiazolidine-S-oxide 18 (C) are shown. Error bars represent SD. Full data are available in PubChem AID 743070 and AID 743350 for WTMtb in biotin-free

medium, AID 743071 and AID 743349 for WT Mtb in biotin-containing medium, AID 743073 and AID 743351 for BioA-OE, and AID 743072 and AID 743352 for

BioA-UE.
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coworkers, efflux-pump-mediated resistance may be success-

fully overcome through chemical modification of the parent anti-

biotic scaffold (Lee et al., 2014). Based on the unique require-

ments for TB chemotherapeutic agents as noted above

combined with the potential ability to overcome efflux-mediated

resistance, target-based strategies could be well-suited for TB

drug development.
TBWCS
Rudimentary TBWCS was first performed in the 1960s using

pathway mutants in cell-wall biosynthesis (Silver, 2013). Modern

TBWCS approaches employing antisense and siRNA target

knockdown were reported by several groups (DeVito et al.,

2002; Forsyth et al., 2002; Yin et al., 2004), and this led to the

discovery of the antibiotics platensimycin and kibdelomycin

(Phillips et al., 2011; Wang et al., 2006; Young et al., 2006).

Mizrahi and coworkers were the first to apply TBWCS to Mtb

and used a more sophisticated method with conditional mutants

that underexpress essential genes for inhibitor screening, since

antisense and siRNA methods are largely ineffective in Mtb

(Abrahams et al., 2012). Our results extend these prior findings

and highlight the utility of whole-cell studies with genetically

modified strains for mode-of-action determination. Remarkably,

the work flow described here identified selective biotin-depen-

dent on-target compounds that inhibit growth of Mtb, even

though BioA requires more than 95% depletion to affect growth

(Park et al., 2011).

While TBWCS is gaining momentum, it is important to recog-

nize the limitations of this approach, because sensitivity to

antibiotics does not always monotonically increase with target

expression levels (Palmer and Kishony, 2014). Thus, respective

target underexpression in E. coli paradoxically reduces suscep-

tibility to fluoroquinolines when the target DNA gyrase is under-

expressed, and has no effect on the sulfonamide antibacterials

when the target dihydropteroate synthase is underexpressed.

As astutely noted by Palmer and Kishony, deviations from the
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expected monotonic relationship between sensitivity and target

expression levels suggests more complex MOAs (Palmer and

Kishony, 2014).
Promising Scaffolds
We identified and structurally characterized several inhibitors

with interesting chemotypes that potently inhibit BioA and

possess on-target whole-cell activity. The N-aryl piperazine

scaffold of 14 is the most promising compound identified in

this high-throughput screening (HTS) campaign, based on its

chemical tractability for further development, potent biochem-

ical activity (IC50 = 155 nM), and on-target biotin-dependent

whole-cell activity. The cocrystal structure of this scaffold

with BioA reveals several opportunities to enhance potency

and selectivity. Additionally, several other meritorious scaffolds

were identified using the sensitive BioA knockdown Mtb

strain, including pyrazolopyrimidine 11, piperidine 16, and

pyrrolothiazolidine-S-oxide 18. Coumarin 15 and benzimidazole

19 possess attractive biotin- and BioA-dependent whole-cell

activity and lack cytotoxicity. However, their activity profiles

indicate partial off-target activity as the activity was not elimi-

nated upon BioA overexpression or addition of exogenous

biotin. These compounds therefore warrant further study given

their favorable therapeutic index and promising activity, but do

not represent useful molecular scaffolds for preparation of a

probe for in vivo chemical validation of biotin synthesis in Mtb.

Prior structural studies with Mtb BioA have clearly shown that

the active site is highly adaptable in the presence of different

bound ligands (Dai et al., 2014; Dey et al., 2010; Shi et al.,

2011). This plasticity is not unexpected, given the need for the

enzyme to recognize, bind, and catalyze chemical transfor-

mations of such diverse substrates as KAPA and SAM. Never-

theless, specific conformational changes that support ligand

binding are not easily predicted a priori. Each of the high-resolu-

tion inhibitor complexes described here represents an induced

protein conformation that constitutes a possible ground state
Ltd All rights reserved



Figure 5. Crystal Structures with Bound Inhibitors
(A–C) 3s omit density (Fo-Fc) from cocrystal structures of pyrrolothiazolidine-S-oxide 18 (A), 7-diethylaminocoumarin 15 (B) andN-aryl piperazine 14-Cl (C) (cyan),

and the molecular environment surrounding the binding site near the PLP (green). Comparable binding is observed in both active sites of the BioA heterodimer,

but only one is shown. Residues from one monomer are identified with primes; those from the other are not.

(D–F) Ligand interaction maps. Hydrogen bonds are shown as green dashed lines, and hydrophobic contacts (closer than 3.9 Å) are identified by thin red dashed

lines.
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for use in modeling or design of analogs derived from these

scaffolds.

SIGNIFICANCE

Biotin biosynthesis is a genetically validated pathway inMtb

for antibiotic development. The chemical precedence and

narrow-spectrum activity afforded by the antibiotic amicle-

nomycin, which inhibits biotin biosynthesis at BioA, high-

light the unique vulnerability of this pathway in Mtb. Here

we describe the identification of potent on-target BioA-

and biotin-dependent Mtb whole-cell active compounds

through HTS followed by phenotypic screening employing

isogenic Mtb strains that differentially express BioA. The

use of Mtb strains that allow modulation of BioA protein

levels was crucial to distinguish among hits with nonspecific

versus on-target activity. More importantly, the use of BioA-

depletedMtb strains revealed hits with on-target whole-cell

activity that would be overlooked by traditional antibiotic

discovery work flows. The structural characterization of

three different scaffolds bound in the BioA active site
Chemistry & Biology 22,
directly adjacent to the PLP-cofactor demonstrate the

remarkable plasticity of BioA to accommodate structurally

diverse ligands, which may account for the unique vulnera-

bility of this target to chemical inhibition by a wide array of

diverse chemical types.

EXPERIMENTAL PROCEDURES

Materials

BioA and BioD were expressed and purified as described previously (Geders

et al., 2012;Wilson et al., 2011). The aspartate transaminase assay kit was pur-

chased from BioAssay Systems. The fluorescent tracer N1-{3-[2-(2-{3-[(fluo-

rescein-5-yl)carbonyl]aminopropoxy}ethoxy)ethoxy]propyl}dethiobiotinamide

9 (Wilson et al., 2011); KAPA, 5 (Wilson et al., 2011); and DAPA,6 (Vasanthaku-

mar et al., 2007) were synthesized as reported. Previously identified (Wilson

et al., 2011) as a BioA inhibitor from screening the LOPAC library (Sigma-

Aldrich), 6-(2-fluorophenyl)-1,3-dioxolo[4,5-g]quinolin-8(5H)-one (CHM-1)

was used as a positive control and purchased from R&D Systems. All other

buffers, salts, and reagents for the HTS assay (streptavidin from Streptomyces

avidiniii as a salt-free lyophilized powder, S-(50-adenosyl)-L-methionine p-

toluenesulfonate salt [SAM], adenosine 50-triphosphate disodium salt hydrate

[ATP], DTT, pyridoxal 50-phosphate hydrate [PLP], MgCl2, NaHCO3, bicine,

and 1% w/v Igepal CA630) were obtained from Sigma-Aldrich, EMD Millipore,
76–86, January 22, 2015 ª2015 Elsevier Ltd All rights reserved 83



Figure 6. ITC Profile of 10 mM BioA with 103 mM 14

Experiments were performed as described in the Experimental Procedures.

(Top) Data obtained from automatic titrations of 200 ml 14. (Bottom) The

integrated curve showing experimental points (-) and the best fit (–). A fit of

the data to a one-set-of-sites model produced the following values for

the binding of 14 to BioA (average fromduplicate experiments): n = 0.73 ± 0.11,

DH = �11.8 ± 0.8 kcal mmol�1, �TDS = 2.3 ± 0.8 kcal mol�1; and KA = (9.23 ±

0.89) 3 106 M�1.
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or Fisher Scientific. Mycobacterium tuberculosis H37Rv, Mycobacterium

tuberculosis SD1, and Mycobacterium tuberculosis SD5 strains have been

described previously (Park et al., 2011). The reagents in Sauton’s medium

(0.5 g KH2PO4, 0.5 g MgSO4∙7H2O, 2.0 g citric acid, 0.05 g ferric ammonium

citrate, 60 ml glycerol, 4.0 g asparagine, 0.1 ml 1% ZnSO4, and 0.02% tylox-

apol in 1 l) for the Mtb whole-cell studies were obtained from Sigma-Aldrich.

HEK293 (ATCC CRL-1573), HepG2 (ATCC HB-8065), and NIH 3T3 (ATCC

CRL-1658) were obtained from the American Type Culture Collection, and

cell culture medium and reagents (Dulbecco’s modified Eagle’s medium, fetal

bovine serum, 0.25% trypsin-EDTA, Pen/Strep/L-Glutamine, and MG132)

were purchased from Gibco. Mitoxantrone dihydrochloride was obtained

from Enzo Life Sciences and the CellTiterGlo assay kit was purchased from

Promega.
HTS Assay Protocol

Compounds in 10 mM DMSO stock solution (7.5 mL) were robotically

dispensed into Aurora black 1,536-well plates (cat#00019180BX) using an

Echo 555 acoustic liquid handler. The first and last four columns contained

positive (compound CHM-1, CID357860) and negative (DMSO only) controls.

Next, 3.75 ml reaction buffer (100 nM BioA, 640 nM BioD, 1.5 mM SAM, 20 nM
84 Chemistry & Biology 22, 76–86, January 22, 2015 ª2015 Elsevier
Fluorescent-DTB tracer 9, 92.5 nM streptavidin, 2 mMDTT, 5 mMATP, 50mM

NaHCO3, 1 mMMgCl2, 0.1 mM PLP, 0.0025% Igepal CA630, and 100 mM Bi-

cine [pH 8.6]) containing all reaction components except KAPAwas dispensed

into all wells of the plate. The reaction was started by the addition of 3.75 ml

freshly prepared KAPA initiation solution (6 mM KAPA, 50 mM NaHCO3,

1 mM MgCl2, 0.0025% Igepal CA630, and 100 mM Bicine [pH 8.6]) and incu-

bated at 25�C for 45 min. The reaction was terminated by the addition of 1.5 ml

500 mM EDTA into each well of the assay plate.

After 5 min equilibration, the plate was read on a Viewlux microplate reader

in fluorescence mode with an excitation of 485 nM, an emission of 530 nM,

and a cutoff of 530 nM (fluorescein isothiocyanate filters). The library was

screened in duplicate and hits were procured as dry powders, and purity

and structural assignment were verified by liquid chromatography-mass spec-

trometry analysis. Primary HTS data were analyzed in Genedata Screener

Assay Analyzer. All values were normalized against DMSO-treated samples

and the positive control. Zʹ values were calculated for each plate from the

positive and negative controls, and plates were considered technically accept-

able for Z0-factors R 0.75. For the HTS, the average of two replicates was

used to rank order activity and to choose compounds for retests. A hit was

defined when the average value of both replicates resulted in greater than

40% inhibition. The BioD counterscreen was performed analogously, but

BioA was excluded from the reaction buffer, BioD was reduced to 10 nM (final

concentration), and the reaction was initiated with DAPA initiation solution

(8 mM DAPA, 50 mM NaHCO3, 1 mM MgCl2, 0.0025% Igepal CA630, and

100 mM Bicine [pH 8.6]). For dose-response studies, 2-fold dilutions of

compound stock solutions were prepared from 10–0.078 mM in DMSO and

7.5 nl of these stock solutions were transferred to 1,536-well assay plates

(as described above) to provide final compound concentrations in the

well ranging from 10 to 0.078 mM. IC50 curves were generated using a four-

parameter Hill equation with the SmartFit algorithm in Genedata Screener

version 7.0.3. The data were normalized to negative and positive controls

as 0 and 100% inhibition, respectively, and the curves were then fit to

the percentage activities.

Whole-Cell Screening Protocol

Mtb WT, BioA-UE, and BioA-OE were grown in Sauton’s medium containing

1 mM biotin to an OD580 nm between 1.0 and 1.2, harvested by centrifugation,

washed twice with biotin-free Sauton’s medium, and diluted in 96-well plates

to an OD580 nm of 0.03. The compounds were added to final concentrations be-

tween 50 and 0.2 mM. Wells containing no compound were used as controls.

Biotin (1 mM) was added when indicated; 200 ng/ml anhydrotetracycline was

added to the Mtb BioA-UE and BioA-OE to achieve the desired level of BioA

expression. Plates were incubated at 37�C and optical density was measured

after 14 days. All growth assays were performed in triplicate. MIC values were

calculated using Prism (version 5.01).

Crystallization

BioA was cocrystallized with 14-Cl, 15, and 18 by the vapor-diffusion method

in a hanging drop at 20�C, as previously described (Dai et al., 2014). Protein

solution containing 10 mg/ml BioA in 25 mM HEPES (pH 7.5), 50 mM NaCl,

0.1 mM tris(2-carboxyethyl)phosphine (TCEP) was mixed with reservoir solu-

tion (9%–14% PEG 8000, 100 mM HEPES [pH 7.5], 100 mM MgCl2, and

500 mM compound) and a seed solution (a reservoir solution containing

crushed BioA crystals) in a 4:3:1 ratio (2 ml BioA protein:1.5 ml reservoir solu-

tion: 0.5 ml crushed BioA seed solution). Crystals appeared in the drop within

24 hr and grew to their full size in 72 hr. BioA-compound cocrystals were cry-

oprotected by transferring to a cryo solution (15% PEG 400, 15% PEG 8000,

100 mM HEPES [pH 7.5], 100 mM MgCl2, and 5 mM compound) using an

appropriately sized fiber loop of a cryo pin from Hampton Research and

then flash frozen in liquid nitrogen.

Data Collection, Processing, and Model Building

The diffraction data for a cocrystal with 18 were collected at 100 K using Cu Ka

radiation on a Rigaku HighFlux HomeLab rotating-anode system with a

Saturn 944+ CCD detector in the Kahlert Structural Biology Laboratory at

the University of Minnesota. Diffraction data for 15 and 14-Cl, cocrystals

were collected on a NOIR-1 CCD at ALS beamline 4.2.2. The data were pro-

cessed, integrated, and scaled with d*TREK (Pflugrath, 1999). The structures
Ltd All rights reserved
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were solved bymolecular replacement using Phaser (McCoy et al., 2007) in the

CCP4 package (Winn et al., 2011) using atomic coordinates from Protein Data

Bank (PDB) code 3TFT as a search model (Shi et al., 2011). Refinement and

model building were done using REFMAC5 (Murshudov et al., 2011), PHENIX

(Adams et al., 2010), and Coot (Emsley and Cowtan, 2004). Ligand geometry

restraints were generated with PRODRG (Schüttelkopf and van Aalten,

2004). Figure 5 was prepared with PyMOL (PyMOL Molecular Graphics Sys-

tem, version 1.5.0.4, Schrödinger.) and Ligplot+ (Laskowski and Swindells,

2011). A summary of crystallographic data and refinement statistics is pro-

vided as Supplemental Information Table S2.
ITC

The ITC experiments were conducted on an automated microcalorimeter

(Malvern Instruments). The experiments were performed at 25�C in ITC buffer

(25 mM HEPES [pH 7.5] and 50 mM NaCl). BioA was exchanged (2 3 13 ml)

into ITC buffer using an Amicon Ultra concentrator, and the final filtrate was

used to prepare a solution of 14. In the titration experiments, 14 was injected

into a solution of the enzyme. Ligand and protein concentrations were 10.2 mM

for BioA (determined by Bradford analysis using BSA as a standard) and

103 mM for 14 (determined by weighing sample on a ultramicrobalance accu-

rate to 0.001 mg). Titrations were carried out with a stirring speed of 750 rpm

and 150 s interval between 4 ml injections. The first injection was excluded

from data fitting. Titrations were run past the point of enzyme saturation to

determine and correct for heats of dilution. The experimental data were fit to

a theoretical titration curve using the Origin software package (version 7.0)

provided with the instrument to afford values of KA (the association constant

in M�1), n (the number of binding sites per monomer), and DH (the binding

enthalpy change in kilocalories per mole). The thermodynamic parameters

DG and DS were calculated using Equation 1 as follows:

DG= � RT InK =DH� TDS; (Equation 1)

whereDG,DH, andDS are the changes in free energy, enthalpy, and entropy of

binding, respectively; R = 1.98 cal mol�1 K�1; and T is the absolute tempera-

ture. The affinity of the ligand for the protein is given as the dissociation con-

stant (KD = 1/KA). ITC experiments were performed in duplicate and analyzed

independently, and the thermodynamic values obtained were averaged.
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