30 research outputs found

    Non-Hermitian shortcut to stimulated Raman adiabatic passage

    Get PDF
    We propose a non-Hermitian generalization of stimulated Raman adiabatic passage (STIRAP), which allows one to increase speed and fidelity of the adiabatic passage. This is done by adding balanced imaginary (gain/loss) terms in the diagonal (bare energy) terms of the Hamiltonian and choosing them such that they cancel exactly the nonadiabatic couplings, providing in this way an effective shortcut to adiabaticity. Remarkably, for a STIRAP using delayed Gaussian-shaped pulses in the counter-intuitive scheme the imaginary terms of the Hamiltonian turn out to be time independent. A possible physical realization of non-Hermitian STIRAP, based on light transfer in three evanescently-coupled optical waveguides, is proposed.Comment: 7 pages, 4 figure

    Quantum simulation of the Riemann-Hurwitz zeta function

    Full text link
    We propose a simple realization of a quantum simulator of the Riemann-Hurwitz (RH) \zeta\ function based on a truncation of its Dirichlet representation. We synthesize a nearest-neighbour-interaction Hamiltonian, satisfying the property that the temporal evolution of the autocorrelation function of an initial bare state of the Hamiltonian reproduces the RH function along the line \sigma+i \omega t of the complex plane, with \sigma>1. The tight-binding Hamiltonian with engineered hopping rates and site energies can be implemented in a variety of physical systems, including trapped ion systems and optical waveguide arrays. The proposed method is scalable, which means that the simulation can be in principle arbitrarily accurate. Practical limitations of the suggested scheme, arising from a finite number of lattice sites N and from decoherence, are briefly discussed.Comment: 6 pages, 3 figure
    corecore