79 research outputs found
Tablet-based Information System for Commercial Air-craft: Onboard Context-Sensitive Information System (OCSIS)
Pilots currently use paper-based documentation and electronic systems to help
them perform procedures to ensure safety, efficiency and comfort on commercial
aircrafts. Management of interconnections among paper-based operational
documents can be a challenge for pilots, especially when time pressure is high
in normal, abnormal, and emergency situations. This dissertation is a
contribution to the design of an Onboard Context-Sensitive Information System
(OCSIS), which was developed on a tablet. The claim is that the use of
con-textual information facilitates access to appropriate operational content
at the right time either automatically or on demand. OCSIS was tested using
human-in-the-loop simulations that involved professional pilots in the Airbus
320 cockpit simulator. First results are encouraging that show OCSIS can be
usable and useful for operational information access. More specifically,
context-sensitivity contributes to simplify this access (i.e., appropriate
operational information is provided at the right time in the right format. In
addition, OCSIS provides other features that paper-based documents do not have,
such as procedure execution status after an interruption. Also, the fact that
several calculations are automatically done by OCSIS tends to decrease the
pilot's task demand
Human-Centered Design as an Integrating Discipline
International audienceWhat is research today? Good research has to be indexed within appropriate mechanisms to be visible, considered and finally useful. These mechanisms are based on quantitative research methods and codes that are often very academic. Consequently, they impose rigorous constraints on the way results should be obtained and presented. In addition, everything people learn in academia needs to be graded. This leads to standard packaging of what should be learned and results in making people executants and not creators nor inventors. In other words, this academic standardization precludes freedom for innovation. This paper proposes Human-Centered Design (HCD) as a solution to override these limitations and roadblocks. HCD involves expertise, experience, participation, modeling and simulation, complexity analysis and qualitative research. What is education today? Education is organized in silos with little attempt to integrate individual academic disciplines. Large system integration is almost never learned in engineering schools, and Human-Systems Integration (HSI) even less. Instead, real-life problem-solving requires integration skills. What is design research? We often hear that design has nothing to do with research, and conversely. Putting design and research together, as complementary disciplines, contributes to combine creativity, rigorous demonstration and validation. This is somehow what HCD is about
Designing for Flexibility: A Human Systems Integration Approach – From rigid automation to flexible autonomy in aerospace operations
For a long time, automation and, more recently, human-centered design (HCD), were developed to
enhance safety, efficiency and comfort of civil and military aircraft. However, if automation led to
considerably effective results in a large number of situations, experience shows that automation
can become a very rigid tool in unexpected situations. Indeed, automation consists in compiling
operational knowledge on specific domains (e.g., handling qualities and flight management) and
providing aircrew with either procedures (automation of people) or implemented algorithms (automation
of machines)
Socioergonomics: A few clarifications on the Technology-Organizations-People Tryptic
Ce document de synthèse présente et définit le terme socio-ergonomie, considéré comme un support sociologique, ontologique et méthodologique de l'intégration des systèmes humains (ISH). Il décrit l'évolution de l'ergonomie, des premières approches physiologiques aux sciences sociales contemporaines en passant par la psychologie, pour soutenir l'ingénierie des systèmes sociotechniques de l'industrie 4.0. Il présente une extension des niveaux de préparation technologique (TRL) aux niveaux de préparation organisationnelle (ORL) et un départ vers une approche socio-ergonomique qui inclut des propriétés systémiques telles que la flexibilité, la séparabilité et les faits sociaux émergents.This position paper introduces and coins the term socioergonomics, considered as a sociological, ontological, and methodological support to human systems integration (HSI). It describes the evolution of ergonomics from early physiological to psychological to contemporary social sciences approaches supporting Industry 4.0 sociotechnical systems engineering. It presents a Technology Readiness Levels (TRLs) extension to Organizational Readiness Levels (ORLs) and a departure toward a socioergonomics approach that includes systemic properties such as flexibility, separability, and emergent social facts
Human-centered design of complex systems: An experience-based approach
This position paper presents a new approach based on my experience in the evolution of human-centered design (HCD) during four decades, and how it has struggled to become a discipline in its own right in complex socio-technical systems’ creation, development and operations. The 20th century saw tremendous industrial developments based on tangible materials that were transformed and assembled to make washing machines, cars, aircraft and power plants; during its last three decades, electronics and software were incrementally added to hardware machines. Operationalization issues moved from hardware to software, making automation and user interfaces central issues. From the beginning of the 21st century, we began to do the exact opposite! Currently, we typically start a project by designing and developing technology on computers, using software only, which is later transformed into hardware (and software). I denote this shift, the ‘socio-technical inversion’. Operationalization issues are moving from software to hardware, making tangibility a central issue. Three useful conceptual models are presented: the SFAC (Structure/Function versus Abstract/Concrete) model; the NAIR (Natural/Artificial versus Cognitive/Physical) model; and the AUTOS (Artifact, User, Task, Organization and Situation) pyramid. Concepts developed in this article are based on the rationalization of a long experience in the aerospace domain
Aerospace Human System Integration Evolution over the Last 40 Years
Ce chapitre porte sur l'évolution de la conception centrée sur l'humain (CCH) dans les systèmes aérospatiaux au cours des quarante dernières années. Les facteurs humains et l'ergonomie sont passés de l'étude des questions physiques et médicales à celle des questions cognitives dans les années 1980. L'arrivée des ordinateurs a entraîné le développement de l'interaction homme-machine (IHM), qui s'est ensuite étendue au domaine de la conception de l'interaction numérique et de l'expérience utilisateur (UX). Nous avons abouti au concept de cockpits interactifs, non pas parce que les pilotes interagissaient avec des objets mécaniques, mais parce qu'ils interagissaient à l'aide de dispositifs de pointage sur des écrans d'ordinateur. Depuis le début des années 2000, les questions de complexité et d'organisation ont pris de l'importance, au point que la conception et la gestion des systèmes complexes se sont retrouvées au centre de l'attention, avec un coup de projecteur sur le rôle de l'élément humain et des configurations organisationnelles. Aujourd'hui, l'intégration des systèmes humains (ISH) n'est plus seulement un problème d'agent unique, mais un domaine de recherche multi-agents. Les systèmes sont des systèmes de systèmes, considérés comme des représentations de personnes et de machines. Ils sont constitués de structures et de fonctions articulées statiquement et dynamiquement. Lorsqu'ils sont à l'œuvre, ce sont des organismes vivants qui génèrent des fonctions et des structures émergentes dont il faut tenir compte dans l'évolution (c'est-à-dire dans leur reconception constante). Ce chapitre se concentrera plus spécifiquement sur les facteurs humains tels que les représentations systémiques centrées sur l'homme, les systèmes vitaux, les questions organisationnelles, la gestion de la complexité, la modélisation et la simulation, la flexibilité, la tangibilité et l'autonomie. La discussion s'appuiera sur plusieurs exemples dans l'aviation civile et le combat aérien, ainsi que dans l'aérospatiale.This chapter focuses on the evolution of Human-Centered Design (HCD) in aerospace systems over the last forty years. Human Factors and Ergonomics first shifted from the study of physical and medical issues to cognitive issues circa the 1980s. The advent of computers brought with it the development of human-computer interaction (HCI), which then expanded into the field of digital interaction design and User Experience (UX). We ended up with the concept of interactive cockpits, not because pilots interacted with mechanical things, but because they interacted using pointing devices on computer displays. Since the early 2000s, complexity and organizational issues gained prominence to the point that complex systems design and management found itself center stage, with the spotlight on the role of the human element and organizational setups. Today, Human Systems Integration (HSI) is no longer only a single-agent problem, but a multi-agent research field. Systems are systems of systems, considered as representations of people and machines. They are made of statically and dynamically articulated structures and functions. When they are at work, they are living organisms that generate emerging functions and structures that need to be considered in evolution (i.e., in their constant redesign). This chapter will more specifically, focus on human factors such as human-centered systemic representations, life critical systems, organizational issues, complexity management, modeling and simulation, flexibility, tangibility and autonomy. The discussion will be based on several examples in civil aviation and air combat, as well as aerospace
From STEM to STEAM: Toward a Human-Centered Education, Creativity and Learning Thinking
No abstract availabl
A few clarifications on the Technology-Organizations-People Tryptic
Ce document de synthèse présente et définit le terme socio-ergonomie, considéré comme un soutien sociologique, ontologique et méthodologique à l'intégration des systèmes humains (ISH). Il décrit l'évolution de l'ergonomie, des premières approches physiologiques aux sciences sociales contemporaines en passant par la psychologie, pour soutenir l'ingénierie des systèmes sociotechniques de l'industrie 4.0. Il présente une extension des niveaux de préparation technologique (TRL) aux niveaux de préparation organisationnelle (ORL) et un départ vers une approche socio-ergonomique qui inclut des propriétés systémiques telles que la flexibilité, la séparabilité et les faits sociaux émergents.This position paper introduces and coins the term socioergonomics, considered as a sociological, ontological and methodological support to human systems integration (HSI). It describes the evolution of ergonomics from early physiological to psychological to contemporary social sciences approaches supporting Industry 4.0 sociotechnical systems engineering. It presents a Technology Readiness Levels (TRLs) extension to Organizational Readiness Levels (ORLs) and a departure toward a socioergonomics approach that includes systemic properties such as flexibility, separability and emergent social facts
MOHICAN: human-machine performance monitoring through trust and collaboration analysis. – Towards smarter design of a virtual assistant and real time optimization of machine behavior
Evaluation of the performance of Human-Machine Teaming brings two substantial values to military
effectiveness: (1) enhancing the design quality of cognitive aircraft systems, (2) synchronizing
the behavior of the virtual assistant with the cockpit needs during fights.
This paper presents “MOHICAN”, a system-of-systems approach for monitoring the performance
of Human-Machine Teaming in combat aircraft cockpits. MOHICAN will include a method, its
tools, and a model addressing a multirole aircraft. Those principles developed for the cockpit may
be extended to more complex systems of systems by expanding measure criteria, and by integrating
collective teaming contribution to global performance of the system as a whole (e.g., military
air operations)
- …