63 research outputs found
Simultaneous removal of NO and Hgâ° using Fe and Co co-doped Mn-Ce/TiOâ catalysts
Fe and Co co-doped Mn-Ce/TiO2 (MCT) catalysts were investigated for the simultaneous removal of nitric oxide (NO) and elemental mercury (Hg0) at reaction temperature lower than 200 °C. The catalysts were characterized by BrunauerâEmmettâTeller (BET), temperature program reduction (TPR), scanning electron microscope (SEM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) analysis. The experimental results showed that the co-doped 2Fe4Co-MCT catalyst exhibited better performance for the simultaneous removal of NO and Hg0 compared to Fe or Co doped catalysts. This could be due to higher BET surface area and better redox property of 2Fe4Co-MCT catalyst. In addition, we propose that chemisorbed O2 played a dominant role in selective catalytic reduction (SCR) of NO while lattice O2 played a key role in Hg0 oxidation. The results also indicate that the introduction of Fe species enhanced the activity of SCR, whereas the introduction of Co species enhanced the oxidation of Hg0. The synergistic effect of Fe and Co species in the 2Fe4Co-MCT catalyst are also suggested to be an important mechanism for simultaneously removing NO and Hg0
Producing carbon nanotubes from thermochemical conversion of waste plastics using Ni/ceramic based catalyst
As the amount of waste plastic increases, thermo-chemical conversion of plastics provides an economic flexible and environmental friendly method to manage recycled plastics, and generate valuable materials, such as carbon nanotubes (CNTs). The choice of catalysts and reaction parameters are critical to improving the quantity and quality of CNTs production. In this study, a ceramic membrane catalyst (Ni/Al2O3) was studied to control the CNTs growth, with reaction parameters, including catalytic temperature and Ni content investigated. A fixed two-stage reactor was used for thermal pyrolysis of plastic waste, with the resulting CNTs characterized by various techniques including scanning electronic microscopy (SEM), transmitted electronic microscopy (TEM), temperature programmed oxidation (TPO), and X-ray diffraction (XRD). It is observed that different loadings of Ni resulted in the formation of metal particles with various sizes, which in turn governs CNTs production with varying degrees of quantity and quality, with an optimal catalytic temperature at 700âŻÂ°C
Development of Ca/KIT-6 adsorbents for high temperature CO2 capture
The incorporation of CaO into an inert porous solid support has been identified as an effective approach to improve the stability of adsorbents for CO2 capture. In this work, we focus on enhancing the capacity of carbon capture and cyclic stability of CaO by impregnating CaO particles into a three-dimensional mesoporous silica (KIT-6) support. At a low CaO loading, the three-dimensional mesoporous support was filled with CaO nano-particles. The further increase of CaO loading resulted in the aggregation of CaO particles on the external surface of the support material, as identified by electron microscopy analysis. These CaO/KIT-6 adsorbents show excellent high-temperature CO2 carbonation/calcination stability over multiple cycles of CaO carbonation and calcination. The enhancement of the performance of carbon capture is attributed to the interaction between CaO and the silica skeleton of KIT-6 through the formation of interfacial CaSiO3 and Ca2SiO4 which enhanced the resistance of CaO sintering
Plastic regulates its co-pyrolysis process with biomass: Influencing factors, model calculations, and mechanisms
Co-pyrolysis of plastics and biomass can effectively improve the quality of bio-oil and solve the problem of plastic pollution. However, synergistic effect of co-pyrolysis on kinetics and the role of biomass H/Ceff in co-pyrolysis are still not conclusive. In this work, the co-pyrolysis synergistic effects of three different hydrogen-to-carbon ratio (H/Ceff) of biomass-rice husk (RH), sugarcane bagasse (SUG), and poplar wood (PW) with hydrogen-rich polypropylene (PP) were studied using a thermogravimetric method. The total synergy degree (Ï) and the difference between experimental and theoretical weight losses (ÎW) were defined, and the activation energies of various experimental materials were calculated by the isoconversional method. The results showed that the addition of PP reduced the dependence of product species on biomass H/Ceff during co-pyrolysis. The synergistic effect of biomass and PP was related to biomass types, pyrolysis temperature, and mass ratio of biomass to PP. The mixture of SUG and PP showed positive synergistic effect at all mass ratios. Simultaneously, at the low temperature of pyrolysis, the synergistic effect is inhibited in all mixtures, which might be due to the melting of PP. Kinetic analysis showed that the activation energy could be reduced by 11.14â31.78% by co-pyrolysis with biomass and PP. A multi-step mechanism was observed in both the pyrolysis of a single sample and the co-pyrolysis of a mixture, according to Criadoâs schematic analysis
Topology design and analysis of a novel 3-translational parallel mechanism with analytical direct position solutions and partial motion decoupling
International audienceAccording to the topological design theory and method of parallel mechanism (PM) based on position and orientation characteristic (POC) equations, this paper design a novel 3-translation (3T) PM that has three advantages, i.e., â it consists on three actuated prismatic joints, ⥠the PM has analytical direct position solutions, and âą the PM is of partial motion decoupling property. Firstly, the main topological characteristics such as the POC, degree of freedom and coupling degree are calculated for kinematics modelling. Due to the special constraint feature of the 3-translation, the analytical direct position solutions of the PM can be directly obtained without needing to use one-dimensional search method. Further, the conditions of the singular configuration of the PM, as well as the singularity location inside the workspace are analyzed according to the inverse kinematics
Enhanced hydrogen production from catalytic biomass gasification with in-situ CO<sub>2</sub> capture
- âŠ