7,187 research outputs found

    A First Step Towards Nuance-Oriented Interfaces for Virtual Environments

    Get PDF
    Designing usable interfaces for virtual environments (VEs) is not a trivial task. Much of the difficulty stems from the complexity and volume of the input data. Many VEs, in the creation of their interfaces, ignore much of the input data as a result of this. Using machine learning (ML), we introduce the notion of a nuance that can be used to increase the precision and power of a VE interface. An experiment verifying the existence of nuances using a neural network (NN) is discussed and a listing of guidelines to follow is given. We also review reasons why traditional ML techniques are difficult to apply to this problem

    Affordances and Feedback in Nuance-Oriented Interfaces

    Get PDF
    Virtual Environments (VEs) and perceptive user interfaces must deal with complex users and their modes of interaction. One way to approach this problem is to recognize users’ nuances (subtle conscious or unconscious actions). In exploring nuance-oriented interfaces, we attempted to let users work as they preferred without being biased by feedback or affordances in the system. The hope was that we would discover the users’ innate models of interaction. The results of two user studies were that users are guided not by any innate model but by affordances and feedback in the interface. So, without this guidance, even the most obvious and useful components of an interface will be ignored

    The Sensitivity of First Generation Epoch of Reionization Observatories and Their Potential for Differentiating Theoretical Power Spectra

    Full text link
    Statistical observations of the epoch of reionization (EOR) power spectrum provide a rich data set for understanding the transition from the cosmic "dark ages" to the ionized universe we see today. EOR observations have become an active area of experimental cosmology, and three first generation observatories--MWA, PAST, and LOFAR--are currently under development. In this paper we provide the first quantitative calculation of the three dimensional power spectrum sensitivity, incorporating the design parameters of a planned array. This calculation is then used to explore the constraints these first generation observations can place on the EOR power spectrum. The results demonstrate the potential of upcoming power spectrum observations to constrain theories of structure formation and reionization.Comment: 7 pages with 5 figures. Submitted to Ap

    On ‘Organized Crime’ in the illicit antiquities trade: moving beyond the definitional debate

    Get PDF
    The extent to which ‘organized crime’ is involved in illicit antiquities trafficking is unknown and frequently debated. This paper explores the significance and scale of the illicit antiquities trade as a unique transnational criminal phenomenon that is often said to be perpetrated by and exhibit traits of so-called ‘organized crime.’ The definitional debate behind the term ‘organized crime’ is considered as a potential problem impeding our understanding of its existence or extent in illicit antiquities trafficking, and a basic progression-based model is then suggested as a new tool to move beyond the definitional debate for future research that may help to elucidate the actors, processes and criminal dynamics taking place within the illicit antiquities trade from source to market. The paper concludes that researchers should focus not on the question of whether organized criminals- particularly in a traditionally conceived, mafia-type stereotypical sense- are involved in the illicit antiquities trade, but instead on the structure and progression of antiquities trafficking itself that embody both organized and criminal dynamics

    A new methodology to determine kinetic parameters for one- and two-step chemical models

    Get PDF
    In this paper, a new methodology to determine kinetic parameters for simple chemical models and simple transport properties classically used in DNS of premixed combustion is presented. First, a one-dimensional code is utilized to performed steady unstrained laminar methane-air flame in order to verify intrinsic features of laminar flames such as burning velocity and temperature and concentration profiles. Second, the flame response to steady and unsteady strain in the opposed jet configuration is numerically investigated. It appears that for a well determined set of parameters, one- and two-step mechanisms reproduce the extinction limit of a laminar flame submitted to a steady strain. Computations with the GRI-mech mechanism (177 reactions, 39 species) and multicomponent transport properties are used to validate these simplified models. A sensitivity analysis of the preferential diffusion of heat and reactants when the Lewis number is close to unity indicates that the response of the flame to an oscillating strain is very sensitive to this number. As an application of this methodology, the interaction between a two-dimensional vortex pair and a premixed laminar flame is performed by Direct Numerical Simulation (DNS) using the one- and two-step mechanisms. Comparison with the experimental results of Samaniego et al. (1994) shows a significant improvement in the description of the interaction when the two-step model is used

    Nearby Doorways, Parity Doublets and Parity Mixing in Compound Nuclear States

    Get PDF
    We discuss the implications of a doorway state model for parity mixing in compound nuclear states. We argue that in order to explain the tendency of parity violating asymmetries measured in 233^{233}Th to have a common sign, doorways that contribute to parity mixing must be found in the same energy neighbourhood of the measured resonance. The mechanism of parity mixing in this case of nearby doorways is closely related to the intermediate structure observed in nuclear reactions in which compound states are excited. We note that in the region of interest (233^{233}Th) nuclei exhibit octupole deformations which leads to the existence of nearby parity doublets. These parity doublets are then used as doorways in a model for parity mixing. The contribution of such mechanism is estimated in a simple model.Comment: 11 pages, REVTE

    Neural correlates of belief‐ and desire‐reasoning in 7‐ and 8‐year‐old children: an event‐related potential study

    Full text link
    Theory of mind requires belief‐ and desire‐understanding. Event‐related brain potential (ERP) research on belief‐ and desire‐reasoning in adults found mid‐frontal activations for both desires and beliefs, and selective right‐posterior activations only for beliefs. Developmentally, children understand desires before beliefs; thus, a critical question concerns whether neural specialization for belief‐reasoning exists in childhood or develops later. Neural activity was recorded as 7‐ and 8‐year‐olds ( N  = 18) performed the same diverse‐desires, diverse‐beliefs, and physical control tasks used in a previous adult ERP study. Like adults, mid‐frontal scalp activations were found for belief‐ and desire‐reasoning. Moreover, analyses using correct trials alone yielded selective right‐posterior activations for belief‐reasoning. Results suggest developmental links between increasingly accurate understanding of complex mental states and neural specialization supporting this understanding. Theory of mind requires belief‐ and desire‐understanding. Event‐related brain potential (ERP) research on belief‐ and desire‐reasoning in adults found mid‐frontal activations for both desires and beliefs, and selective right‐posterior activations only for beliefs. Developmentally, children understand desires before beliefs; thus, a critical question concerns whether neural specialization for belief‐reasoning exists in childhood or develops later. Neural activity was recorded as 7‐ and 8‐year‐olds ( N  = 18) performed the same diverse‐desires, diverse‐beliefs, and physical control tasks used in a previous adult ERP study.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/93540/1/j.1467-7687.2012.01158.x.pd

    Evaluation of joint probability density function models for turbulent nonpremixed combustion with complex chemistry

    Get PDF
    Two types of mixing sub-models are evaluated in connection with a joint-scalar probability density function method for turbulent nonpremixed combustion. Model calculations are made and compared to simulation results for homogeneously distributed methane-air reaction zones mixing and reacting in decaying turbulence within a two-dimensional enclosed domain. The comparison is arranged to ensure that both the simulation and model calculations a) make use of exactly the same chemical mechanism, b) do not involve non-unity Lewis number transport of species, and c) are free from radiation loss. The modified Curl mixing sub-model was found to provide superior predictive accuracy over the simple relaxation-to-mean submodel in the case studied. Accuracy to within 10-20% was found for global means of major species and temperature; however, nitric oxide prediction accuracy was lower and highly dependent on the choice of mixing sub-model. Both mixing submodels were found to produce non-physical mixing behavior for mixture fractions removed from the immediate reaction zone. A suggestion for a further modified Curl mixing sub-model is made in connection with earlier work done in the field
    • 

    corecore