145 research outputs found

    A Comparison of the Ocean Microbarom Recorded on the Ground and in the Stratosphere

    Get PDF
    The, ocean microbarom is an acoustic signal generated via nonlinear interaction of ocean surface waves. It can propagate for thousands of kilometers and represent a significant infrasonic noise source for ground infrasound stations across the globe. However, wind noise often compromises detections at ground stations. Furthermore, the microbarom may travel in elevated acoustic ducts that do not transmit enough energy for detections on ground stations. Here the presence of the ocean microbarom on two high-altitude balloon flights is investigated. A spectral peak consistent with the microbarom was observed on sensors in the stratosphere but not on those deployed on the ground near the flight path of the balloon. This is probably due to an elevated acoustic duct and/or a superior signal-to-noise ratio in the stratosphere. Thus, microbarom activity quantified solely with ground-based sensors may underestimate the occurrence of the phenomenon. However, high levels of interference from flight system electronics and/other other payloads may have obscured other microbarom episodes during the balloon deployments

    Infrasound in the middle stratosphere measured with a free-flying acoustic array

    Get PDF
    Infrasound recorded in the middle stratosphere suggests that the acoustic wavefield above the Earth's surface differs dramatically from the wavefield near the ground. In contrast to nearby surface stations, the balloon-borne infrasound array detected signals from turbulence, nonlinear ocean wave interactions, building ventilation systems, and other sources that have not been identified yet. Infrasound power spectra also bore little resemblance to spectra recorded on the ground at the same time. Thus, sensors on the Earth's surface likely capture a fraction of the true diversity of acoustic waves in the atmosphere. Future studies building upon this experiment may quantify the acoustic energy flux from the surface to the upper atmosphere, extend the capability of the International Monitoring System to detect nuclear explosions, and lay the observational groundwork for a recently proposed mission to detect earthquakes on Venus using free-flying microphones. Key Points Stratospheric infrasound is very different from infrasound recorded on ground stations Numerous broadband and narrowband signals exist in the stratosphere, some of unknown origin Acoustic networks on free floating balloons have unique advantages and disadvantages

    Detecting Lightning Infrasound Using a High-Altitude Balloon

    Get PDF
    Acoustic waves with a wide range of frequencies are generated by lightning strokes during thunderstorms, including infrasonic waves (0.1 to 20 Hz). The source mechanism for these low-frequency acoustic waves is still debated, and studies have so far been limited to ground-based instruments. Here we report the first confirmed detection of lightning-generated infrasound with acoustic instruments suspended at stratospheric altitudes using a free-flying balloon. We observe high-amplitude signals generated by lightning strokes located within 100 km of the balloon as it flew over the Tasman Sea on 17 May 2016. The signals share many characteristics with waveforms recorded previously by ground-based instruments near thunderstorms. The ability to measure lightning activity with high-altitude infrasound instruments has demonstrated the potential for using these platforms to image the full acoustic wavefield in the atmosphere. Furthermore, it validates the use of these platforms for recording and characterizing infrasonic sources located beyond the detection range of ground-based instruments

    Topographically Scattered Infrasound Waves Observed on Microbarometer Arrays in the Lower Stratosphere

    Get PDF
    When an acoustic wave strikes a topographic feature, some of its energy is scattered. Sensors on the ground cannot capture these scattered signals when they propagate at high angles. We report observations of upwardly-scattered acoustic waves prior to refraction back to the ground, intercepting them with a set of balloon-borne infrasound microbarometers in the lower stratosphere over northern Sweden. We show that these scattered waves generate a coda whose presence can be related to topography beneath balloons and low-altitude acoustic ducts. The inclination of the coda signals changes systematically with time, as expected from waves arriving from scatterers successively closer to receivers. The codas are present when a temperature inversion channels infrasound from a set of ground chemical explosions along the ground, but are absent following the inversion's dissipation. Since scattering partitions energy away from the main arrival, these observations imply a mechanism of amplitude loss that had previously been inaccessible to measurement. As such, these data and results allow for a better comprehension of interactions between atmospheric infrasound propagation and the solid earth

    Explosion-generated infrasound recorded on ground and airborne microbarometers at regional distances

    Get PDF
    Recent work in deploying infrasound (low-frequency sound) sensors on aerostats and free-flying balloons has shown them to be viable alternatives to ground stations. However, no study to date has compared the performance of surface and freefloating infrasound microbarometers with respect to acoustic events at regional (100s of kilometers) range. The prospect of enhanced detection of aerial explosions at similar ranges, such as those from bolides, has not been investigated either. We examined infrasound signals from three 1-ton trinitrotoluene (TNT) equivalent chemical explosions using microbarometers on two separate balloons at 280- to 400-km ranges and ground stations at 6.3- to 350-km ranges. Signal celerities were consistent with acoustic waves traveling in the stratospheric duct. However, significant differences were noted between the observed arrival patterns and those predicted by an acoustic propagation model. Very low-background noise levels on the balloons were consistent with previous studies that suggest wind interference is minimal on freely drifting sensors. Simulated propagation patterns and observed noise levels also confirm that balloon-borne microbarometers should be very effective at detecting explosions in the middle and upper atmosphere as well as those on the surface

    Randomized multicentre pilot study of sacubitril/valsartan versus irbesartan in patients with chronic kidney disease: United Kingdom Heart and Renal Protection (HARP)- III—rationale, trial design and baseline data

    Get PDF
    BACKGROUND: Patients with chronic kidney disease (CKD) are at risk of progression to end-stage renal disease and cardiovascular disease. Data from other populations and animal experiments suggest that neprilysin inhibition (which augments the natriuretic peptide system) may reduce these risks, but clinical trials among patients with CKD are required to test this hypothesis. METHODS: UK Heart and Renal Protection III (HARP-III) is a multicentre, double-blind, randomized controlled trial comparing sacubitril/valsartan 97/103 mg two times daily (an angiotensin receptor-neprilysin inhibitor) with irbesartan 300 mg one time daily among 414 patients with CKD. Patients ≥18 years of age with an estimated glomerular filtration rate (eGFR) of ≥45 but <60 mL/min/1.73 m2 and urine albumin:creatinine ratio (uACR) >20 mg/mmol or eGFR ≥20 but <45 mL/min/1.73 m2 (regardless of uACR) were invited to be screened. Following a 4- to 7-week pre-randomization single-blind placebo run-in phase (during which any current renin-angiotensin system inhibitors were stopped), willing and eligible participants were randomly assigned either sacubitril/valsartan or irbesartan and followed-up for 12 months. The primary aim was to compare the effects of sacubitril/valsartan and irbesartan on measured GFR after 12 months of therapy. Important secondary outcomes include effects on albuminuria, change in eGFR over time and the safety and tolerability of sacubitril/valsartan in CKD. RESULTS: Between November 2014 and January 2016, 620 patients attended a screening visit and 566 (91%) entered the pre-randomization run-in phase. Of these, 414 (73%) participants were randomized (mean age 63 years; 72% male). The mean eGFR was 34.0 mL/min/1.73 m2 and the median uACR was 58.5 mg/mmol. CONCLUSIONS: UK HARP-III will provide important information on the short-term effects of sacubitril/valsartan on renal function, tolerability and safety among patients with CKD

    Monitoring changes in human activity during the COVID-19 shutdown in Las Vegas using infrasound microbarometers

    Get PDF
    While studies of urban acoustics are typically restricted to the audio range, anthropogenic activity also generates infrasound (<20 Hz, roughly at the lower end of the range of human hearing). Shutdowns related to the COVID-19 pandemic unintentionally created ideal conditions for the study of urban infrasound and low frequency audio (20-500 Hz), as closures reduced human-generated ambient noise, while natural signals remained relatively unaffected. An array of infrasound sensors deployed in Las Vegas, NV, provides data for a case study in monitoring human activity during the pandemic through urban acoustics. The array records a sharp decline in acoustic power following the temporary shutdown of businesses deemed nonessential by the state of Nevada. This decline varies spatially across the array, with stations close to McCarran International Airport generally recording the greatest declines in acoustic power. Further, declines in acoustic power fluctuate with the time of day. As only signals associated with anthropogenic activity are expected to decline, this gives a rough indication of periodicities in urban acoustics throughout Las Vegas. The results of this study reflect the city's response to the pandemic and suggest spatiotemporal trends in acoustics outside of shutdowns

    A dynamical gluon mass solution in a coupled system of the Schwinger-Dyson equations

    Full text link
    We study numerically the Schwinger-Dyson equations for the coupled system of gluon and ghost propagators in the Landau gauge and in the case of pure gauge QCD. We show that a dynamical mass for the gluon propagator arises as a solution while the ghost propagator develops an enhanced behavior in the infrared regime of QCD. Simple analytical expressions are proposed for the propagators, and the mass dependency on the ΛQCD\Lambda_{QCD} scale and its perturbative scaling are studied. We discuss the implications of our results for the infrared behavior of the coupling constant, which, according to fits for the propagators infrared behavior, seems to indicate that αs(q2)→0\alpha_s (q^2) \to 0 as q2→0q^2 \to 0.Comment: 17 pages, 7 figures - Revised version to be consistent with erratum to appear in JHE

    The acoustic signatures of ground acceleration, gas expansion, and spall fallback in experimental volcanic explosions

    Get PDF
    Infrasound and high-speed imaging during a series of field-scale buried explosions suggest new details about the generation and radiation patterns of acoustic waves from volcanic eruptions. We recorded infrasound and high-speed video from a series of subsurface explosions with differing burial depths and charge sizes. Joint observations and modeling allow the extraction of acoustic energy related to the magnitude of initial ground deformation, the contribution of gas breakout, and the timing of the fallback of displaced material. The existence and relative acoustic amplitudes of these three phases depended on the size and depth of the explosion. The results motivate a conceptual model that relates successive contributions from ground acceleration, gas breakout, and spall fallback to the acoustic amplitude and waveform characteristics of buried explosions. We place the literature on infrasound signals at Santiaguito Volcano, Guatemala, and Sakurajima and Suwonosejima Volcanoes, Japan, in the context of this model

    Parity Violation in Proton-Proton Scattering

    Full text link
    Measurements of parity-violating longitudinal analyzing powers (normalized asymmetries) in polarized proton-proton scattering provide a unique window on the interplay between the weak and strong interactions between and within hadrons. Several new proton-proton parity violation experiments are presently either being performed or are being prepared for execution in the near future: at TRIUMF at 221 MeV and 450 MeV and at COSY (Kernforschungsanlage Juelich) at 230 MeV and near 1.3 GeV. These experiments are intended to provide stringent constraints on the set of six effective weak meson-nucleon coupling constants, which characterize the weak interaction between hadrons in the energy domain where meson exchange models provide an appropriate description. The 221 MeV is unique in that it selects a single transition amplitude (3P2-1D2) and consequently constrains the weak meson-nucleon coupling constant h_rho{pp}. The TRIUMF 221 MeV proton-proton parity violation experiment is described in some detail. A preliminary result for the longitudinal analyzing power is Az = (1.1 +/-0.4 +/-0.4) x 10^-7. Further proton-proton parity violation experiments are commented on. The anomaly at 6 GeV/c requires that a new multi-GeV proton-proton parity violation experiment be performed.Comment: 13 Pages LaTeX, 5 PostScript figures, uses espcrc1.sty. Invited talk at QULEN97, International Conference on Quark Lepton Nuclear Physics -- Nonperturbative QCD Hadron Physics & Electroweak Nuclear Processes --, Osaka, Japan May 20--23, 199
    • …
    corecore