3,383 research outputs found
Analytical solution for the electric field in a half space conductor due to alternating current injected at the surface
An analytical expression for the electric field in a half space conductor, due to alternating current injected at the surface, is derived. Assuming that the injected current flows in wires perpendicular to the surface of the test piece, the problem can be formulated in terms of a single, transverse magnetic, potential. Considering at first one wire, the cylindrical symmetry permits simplification of the calculation by use of the Hankel transform. The final result for a system with two current-carrying wires is obtained by superposition
The environment and host haloes of the brightest z~6 Lyman-break galaxies
By studying the large-scale structure of the bright high-redshift Lyman-break
galaxy (LBG) population it is possible to gain an insight into the role of
environment in galaxy formation physics in the early Universe. We measure the
clustering of a sample of bright (-22.7<M_UV<-21.125) LBGs at z~6 and use a
halo occupation distribution (HOD) model to measure their typical halo masses.
We find that the clustering amplitude and corresponding HOD fits suggests that
these sources are highly biased (b~8) objects in the densest regions of the
high-redshift Universe. Coupled with the observed rapid evolution of the number
density of these objects, our results suggest that the shape of high luminosity
end of the luminosity function is related to feedback processes or dust
obscuration in the early Universe - as opposed to a scenario where these
sources are predominantly rare instances of the much more numerous M_UV ~ -19
population of galaxies caught in a particularly vigorous period of star
formation. There is a slight tension between the number densities and
clustering measurements, which we interpret this as a signal that a refinement
of the model halo bias relation at high redshifts or the incorporation of
quasi-linear effects may be needed for future attempts at modelling the
clustering and number counts. Finally, the difference in number density between
the fields (UltraVISTA has a surface density ~1.8 times greater than UDS) is
shown to be consistent with the cosmic variance implied by the clustering
measurements.Comment: 19 pages, 8 figures, accepted MNRAS 23rd March 201
Recommended from our members
Memory in autism spectrum disorder: a meta-analysis of experimental studies
To address inconsistencies in the literature on memory in Autism Spectrum Disorder (ASD), we report the first ever meta-analysis of short-term (STM) and episodic long-term (LTM) memory in ASD, evaluating the effects of type of material, type of retrieval and the role of inter-item relations. Analysis of 64 studies comparing individuals with ASD and typical development (TD) showed greater difficulties in ASD compared to TD individuals in STM (Hedges’ g=-0.53 [95%CI -0.90; -0.16], p=.005, I²=96%) compared to LTM (g=-0.30 [95%CI -0.42; -0.17], p<.00001, I²=24%), a small difficulty in verbal LTM (g=-0.21, p=.01), contrasting with a medium difficulty for visual LTM (g= -0.41, p=.0002) in ASD compared to TD individuals. We also found a general diminution in free recall compared to cued recall and recognition (LTM, free recall: g=-0.38, p<.00001, cued recall: g=-0.08, p=.58, recognition: g=-0.15, p=.16; STM, free recall: g=-0.59, p=.004, recognition: g=-0.33, p=.07). We discuss these results in terms of their relation to semantic memory. The limited diminution in verbal LTM and preserved overall recognition and cued recall (supported retrieval) may result from a greater overlap of these tasks with semantic long-term representations which are overall preserved in ASD. By contrast, difficulties in STM or free recall may result from less overlap with the semantic system or may involve additional cognitive operations and executive demands. These findings highlight the need to support STM functioning in ASD and acknowledge the potential benefit of using verbal materials at encoding and broader forms of memory support at retrieval to enhance performance
Intensity enhancement of O VI ultraviolet emission lines in solar spectra due to opacity
Opacity is a property of many plasmas, and it is normally expected that if an
emission line in a plasma becomes optically thick, its intensity ratio to that
of another transition that remains optically thin should decrease. However,
radiative transfer calculations undertaken both by ourselves and others predict
that under certain conditions the intensity ratio of an optically thick to thin
line can show an increase over the optically thin value, indicating an
enhancement in the former. These conditions include the geometry of the
emitting plasma and its orientation to the observer. A similar effect can take
place between lines of differing optical depth. Previous observational studies
have focused on stellar point sources, and here we investigate the
spatially-resolved solar atmosphere using measurements of the I(1032 A)/I(1038
A) intensity ratio of O VI in several regions obtained with the Solar
Ultraviolet Measurements of Emitted Radiation (SUMER) instrument on board the
Solar and Heliospheric Observatory (SoHO) satellite. We find several I(1032
A)/I(1038 A) ratios observed on the disk to be significantly larger than the
optically thin value of 2.0, providing the first detection (to our knowledge)
of intensity enhancement in the ratio arising from opacity effects in the solar
atmosphere. Agreement between observation and theory is excellent, and confirms
that the O VI emission originates from a slab-like geometry in the solar
atmosphere, rather than from cylindrical structures.Comment: 17 pages, 4 figures, ApJ Letters, in pres
- …