3,937 research outputs found

    Accelerating Atomic Orbital-based Electronic Structure Calculation via Pole Expansion and Selected Inversion

    Full text link
    We describe how to apply the recently developed pole expansion and selected inversion (PEXSI) technique to Kohn-Sham density function theory (DFT) electronic structure calculations that are based on atomic orbital discretization. We give analytic expressions for evaluating the charge density, the total energy, the Helmholtz free energy and the atomic forces (including both the Hellman-Feynman force and the Pulay force) without using the eigenvalues and eigenvectors of the Kohn-Sham Hamiltonian. We also show how to update the chemical potential without using Kohn-Sham eigenvalues. The advantage of using PEXSI is that it has a much lower computational complexity than that associated with the matrix diagonalization procedure. We demonstrate the performance gain by comparing the timing of PEXSI with that of diagonalization on insulating and metallic nanotubes. For these quasi-1D systems, the complexity of PEXSI is linear with respect to the number of atoms. This linear scaling can be observed in our computational experiments when the number of atoms in a nanotube is larger than a few hundreds. Both the wall clock time and the memory requirement of PEXSI is modest. This makes it even possible to perform Kohn-Sham DFT calculations for 10,000-atom nanotubes with a sequential implementation of the selected inversion algorithm. We also perform an accurate geometry optimization calculation on a truncated (8,0) boron-nitride nanotube system containing 1024 atoms. Numerical results indicate that the use of PEXSI does not lead to loss of accuracy required in a practical DFT calculation

    The environment and host haloes of the brightest z~6 Lyman-break galaxies

    Get PDF
    By studying the large-scale structure of the bright high-redshift Lyman-break galaxy (LBG) population it is possible to gain an insight into the role of environment in galaxy formation physics in the early Universe. We measure the clustering of a sample of bright (-22.7<M_UV<-21.125) LBGs at z~6 and use a halo occupation distribution (HOD) model to measure their typical halo masses. We find that the clustering amplitude and corresponding HOD fits suggests that these sources are highly biased (b~8) objects in the densest regions of the high-redshift Universe. Coupled with the observed rapid evolution of the number density of these objects, our results suggest that the shape of high luminosity end of the luminosity function is related to feedback processes or dust obscuration in the early Universe - as opposed to a scenario where these sources are predominantly rare instances of the much more numerous M_UV ~ -19 population of galaxies caught in a particularly vigorous period of star formation. There is a slight tension between the number densities and clustering measurements, which we interpret this as a signal that a refinement of the model halo bias relation at high redshifts or the incorporation of quasi-linear effects may be needed for future attempts at modelling the clustering and number counts. Finally, the difference in number density between the fields (UltraVISTA has a surface density ~1.8 times greater than UDS) is shown to be consistent with the cosmic variance implied by the clustering measurements.Comment: 19 pages, 8 figures, accepted MNRAS 23rd March 201
    • …
    corecore