209 research outputs found

    Monitoring Mixing Processes Using Ultrasonic Sensors and Machine Learning

    Get PDF
    Mixing is one of the most common processes across food, chemical, and pharmaceutical manufacturing. Real-time, in-line sensors are required for monitoring, and subsequently optimising, essential processes such as mixing. Ultrasonic sensors are low-cost, real-time, in-line, and applicable to characterise opaque systems. In this study, a non-invasive, reflection-mode ultrasonic measurement technique was used to monitor two model mixing systems. The two systems studied were honey-water blending and flour-water batter mixing. Classification machine learning models were developed to predict if materials were mixed or not mixed. Regression machine learning models were developed to predict the time remaining until mixing completion. Artificial neural networks, support vector machines, long short-term memory neural networks, and convolutional neural networks were tested, along with different methods for engineering features from ultrasonic waveforms in both the time and frequency domain. Comparisons between using a single sensor and performing multisensor data fusion between two sensors were made. Classification accuracies of up to 96.3% for honey-water blending and 92.5% for flour-water batter mixing were achieved, along with R2 values for the regression models of up to 0.977 for honey-water blending and 0.968 for flour-water batter mixing. Each prediction task produced optimal performance with different algorithms and feature engineering methods, vindicating the extensive comparison between different machine learning approaches

    Transfer learning for process monitoring using reflection-mode ultrasonic sensing

    Get PDF
    The fourth industrial revolution is set to integrate entire manufacturing processes using industrial digital technologies such as the Internet of Things, Cloud Computing, and machine learning to improve process productivity, efficiency, and sustainability. Sensors collect the real-time data required to optimise manufacturing processes and are therefore a key technology in this transformation. Ultrasonic sensors have benefits of being low-cost, in-line, non-invasive, and able to operate in opaque systems. Supervised machine learning models can correlate ultrasonic sensor data to useful information about the manufacturing materials and processes. However, this requires a reference measurement of the process material to label each data point for model training. Labelled data is often difficult to obtain in factory environments, and so a method of training models without this is desirable. This work compares two domain adaptation methods to transfer models across processes, so that no labelled data is required to accurately monitor a target process. The two method compared are a Single Feature transfer learning approach and Transfer Component Analysis using three features. Ultrasonic waveforms are unique to the sensor used, attachment procedure, and contact pressure. Therefore, only a small number of transferable features are investigated. Two industrially relevant processes were used as case studies: mixing and cleaning of fouling in pipes. A reflection-mode ultrasonic sensing technique was used, which monitors the sound wave reflected from the interface between the vessel wall and process material. Overall, the Single Feature method produced the highest prediction accuracies: up to 96.0% and 98.4% to classify the completion of mixing and cleaning, respectively; and R2 values of up to 0.947 and 0.999 to predict the time remaining until completion. These results highlight the potential of combining ultrasonic measurements with transfer learning techniques to monitor industrial processes. Although, further work is required to study various effects such as changing sensor location between source and target domains

    Electrostatic considerations affecting the calculated HOMO-LUMO gap in protein molecules.

    Get PDF
    A detailed study of energy differences between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO gaps) in protein systems and water clusters is presented. Recent work questioning the applicability of Kohn-Sham density-functional theory to proteins and large water clusters (E. Rudberg, J. Phys.: Condens. Mat. 2012, 24, 072202) has demonstrated vanishing HOMO-LUMO gaps for these systems, which is generally attributed to the treatment of exchange in the functional used. The present work shows that the vanishing gap is, in fact, an electrostatic artefact of the method used to prepare the system. Practical solutions for ensuring the gap is maintained when the system size is increased are demonstrated. This work has important implications for the use of large-scale density-functional theory in biomolecular systems, particularly in the simulation of photoemission, optical absorption and electronic transport, all of which depend critically on differences between energies of molecular orbitals.Comment: 13 pages, 4 figure

    Predicting Alcohol Concentration during Beer Fermentation Using Ultrasonic Measurements and Machine Learning

    Get PDF
    Beer fermentation is typically monitored by periodic sampling and off-line analysis. In-line sensors would remove the need for time-consuming manual operation and provide real-time evaluation of the fermenting media. This work uses a low-cost ultrasonic sensor combined with machine learning to predict the alcohol concentration during beer fermentation. The highest ac-curacy model (R2=0.952, MAE=0.265, MSE=0.136) used a transmission-based ultrasonic sensing technique along with the measured temperature. However, the second most accurate model (R2=0.948, MAE=0.283, MSE=0.146) used a reflection-based technique without the temperature. Both the reflection-based technique and the omission of the temperature data are novel to this research and demonstrate the potential for a non-invasive sensor to monitor beer fermentation

    Domain Adaptation and Federated Learning for Ultrasonic Monitoring of Beer Fermentation

    Get PDF
    Beer fermentation processes are traditionally monitored through sampling and off-line wort density measurements. In-line and on-line sensors would provide real-time data on the fermentation progress whilst minimising human involvement, enabling identification of lagging fermentations or prediction of ethanol production end points. Ultrasonic sensors have previously been used for in-line and on-line fermentation monitoring and are increasingly being combined with machine learning models to interpret the sensor measurements. However, fermentation processes typically last many days and so impose a significant time investment to collect data from a sufficient number of batches for machine learning model training. This expenditure of effort must be multiplied if different fermentation processes must be monitored, such as varying formulations in craft breweries. In this work, three methodologies are evaluated to use previously collected ultrasonic sensor data from laboratory scale fermentations to improve machine learning model accuracy on an industrial scale fermentation process. These methodologies include training models on both domains simultaneously, training models in a federated learning strategy to preserve data privacy, and fine-tuning the best performing models on the industrial scale data. All methodologies provided increased prediction accuracy compared with training based solely on the industrial fermentation data. The federated learning methodology performed best, achieving higher accuracy for 14 out of 16 machine learning tasks compared with the base case model

    A review of ultrasonic sensing and machine learning methods to monitor industrial processes

    Get PDF
    Supervised machine learning techniques are increasingly being combined with ultrasonic sensor measurements owing to their strong performance. These techniques also offer advantages over calibration procedures of more complex fitting, improved generalisation, reduced development time, ability for continuous retraining, and the correlation of sensor data to important process information. However, their implementation requires expertise to extract and select appropriate features from the sensor measurements as model inputs, select the type of machine learning algorithm to use, and find a suitable set of model hyperparameters. The aim of this article is to facilitate implementation of machine learning techniques in combination with ultrasonic measurements for in-line and on-line monitoring of industrial processes and other similar applications. The article first reviews the use of ultrasonic sensors for monitoring processes, before reviewing the combination of ultrasonic measurements and machine learning. We include literature from other sectors such as structural health monitoring. This review covers feature extraction, feature selection, algorithm choice, hyperparameter selection, data augmentation, domain adaptation, semi-supervised learning and machine learning interpretability. Finally, recommendations for applying machine learning to the reviewed processes are made

    Machine learning and domain adaptation to monitor yoghurt fermentation using ultrasonic measurements

    Get PDF
    In manufacturing environments, real-time monitoring of yoghurt fermentation is required to maintain an optimal production schedule, ensure product quality, and prevent the growth of pathogenic bacteria. Ultrasonic sensors combined with machine learning models offer the potential for non-invasive process monitoring. However, methods are required to ensure the models are robust to changing ultrasonic measurement distributions as a result of changing process conditions. As it is unknown when these changes in distribution will occur, domain adaptation methods are needed that can be applied to newly acquired data in real-time. In this work, yoghurt fermentation processes are monitored using non-invasive ultrasonic sensors. Furthermore, a transmission based method is compared to an industrially-relevant non-transmission method which does not require the sound wave to travel through the fermenting yoghurt. Three machine learning algorithms were investigated including fully-connected neural networks, fully-connected neural networks with long short-term memory layers, and convolutional neural networks with long short-term memory layers. Three real-time domain adaptation strategies were also evaluated, namely; feature alignment, prediction alignment, and feature removal. The most accurate method (mean squared error of 0.008 to predict pH during fermentation) was non-transmission based and used convolutional neural networks with long short-term memory layers, and a combination of all three domain adaption methods

    Elusive Majority of Young Moving Groups. I. Young Binaries and Lithium-rich Stars in the Solar Neighborhood

    Get PDF
    Young stars in the solar neighborhood serve as nearby probes of stellar evolution and represent promising targets to directly image self-luminous giant planets. We have carried out an all-sky search for late-type (≈K7–M5) stars within 100 pc selected primarily on the basis of activity indicators from the Galaxy Evolution Explorer and ROSAT. Approximately 2000 active and potentially young stars are identified, of which we have followed up over 600 with low-resolution optical spectroscopy and over 1000 with diffraction-limited imaging using Robo-AO at the Palomar 1.5 m telescope. Strong lithium is present in 58 stars, implying ages spanning ≈10–200 Myr. Most of these lithium-rich stars are new or previously known members of young moving groups including TWA, β Pic, Tuc-Hor, Carina, Columba, Argus, AB Dor, Upper Centaurus Lupus, and Lower Centaurus Crux; the rest appear to be young low-mass stars without connections to established kinematic groups. Over 200 close binaries are identified down to 0.”2—the vast majority of which are new—and will be valuable for dynamical mass measurements of young stars with continued orbit monitoring in the future
    corecore