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Abstract 8 

The fourth industrial revolution is set to integrate entire manufacturing processes using industrial 9 

digital technologies such as the Internet of Things, Cloud Computing, and machine learning to 10 

improve process productivity, efficiency, and sustainability. Sensors collect the real-time data 11 

required to optimise manufacturing processes and are therefore a key technology in this 12 

transformation. Ultrasonic sensors have benefits of being low-cost, in-line, non-invasive, and able to 13 

operate in opaque systems. Supervised machine learning models can correlate ultrasonic sensor 14 

data to useful information about the manufacturing materials and processes. However, this requires 15 

a reference measurement of the process material to label each data point for model training. 16 

Labelled data is often difficult to obtain in factory environments, and so a method of training models 17 

without this is desirable. This work compares two domain adaptation methods to transfer models 18 

across processes, so that no labelled data is required to accurately monitor a target process. The two 19 

method compared are a Single Feature transfer learning approach and Transfer Component Analysis 20 

using three features. Ultrasonic waveforms are unique to the sensor used, attachment procedure, 21 

and contact pressure. Therefore, only a small number of transferable features are investigated. Two 22 

industrially relevant processes were used as case studies: mixing and cleaning of fouling in pipes. A 23 

reflection-mode ultrasonic sensing technique was used, which monitors the sound wave reflected 24 

from the interface between the vessel wall and process material. Overall, the Single Feature method 25 

produced the highest prediction accuracies: up to 96.0 % and 98.4 % to classify the completion of 26 

mixing and cleaning, respectively; and R2 values of up to 0.947 and 0.999 to predict the time 27 

remaining until completion. These results highlight the potential of combining ultrasonic 28 

measurements with transfer learning techniques to monitor industrial processes. Although, further 29 

work is required to study various effects such as changing sensor location between source and target 30 

domains.  31 
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1 Introduction  35 

Whilst the third industrial revolution automated individual unit operations, the fourth industrial 36 

revolution (Industry 4.0) will use Industrial Digital Technologies (IDTs) such as the Internet of Things 37 

to integrate entire manufacturing processes and Machine Learning (ML) to provide automatic 38 

decision making (Thoben, et al. 2017). This has the potential to improve process productivity, raw 39 



material and energy efficiency, product quality and increase manufacturing sustainability 40 

(Ghobakhloo 2020). Sensors collect the real-time data required to optimise manufacturing processes 41 

making them a key technology in this new industrial revolution. Although sensors exist for basic 42 

measurements such as temperature and pressure, there is a need for more advanced techniques 43 

that can monitor materials or processes. Active ultrasonic sensors are low-cost, small, operate non-44 

invasively, and can characterise opaque systems. Furthermore, they are in-line, meaning they 45 

directly measure the process stream without need for manual sampling. Ultrasonic sensors have 46 

been used in process manufacturing for food material characterisation (Awad, et al. 2012, Mohd 47 

Khairi, et al. 2015); monitoring chemical, pharmaceutical, and biotechnology processes (Henning and 48 

Rautenberg 2006); monitoring fermentation (Ojha, et al. 2017); monitoring freezing of food 49 

materials (Cheng, et al. 2015); and quality control in the dairy industry including monitoring 50 

reactions, process stream rheology, material structural changes, and component concentrations 51 

(Mohammadi, et al. 2014).  52 

Typically, either first principle models or calibration curves are developed to determine properties 53 

from US sensor data. However, these can become complex when the sound waves are transmitted 54 

through multiple materials or there is variability in process parameters, e.g. temperature. In 55 

contrast, supervised ML models can be trained to correlate sensor data to useful classes 56 

(classification) or values (regression) without having to define the complex underlying physical 57 

models. ML has been used with US sensors for applications such as monitoring cleaning of dairy 58 

fouling in heat exchangers (Wallhäußer, et al. 2014, Wallhäußer, et al. 2013) and classifying 59 

weldment flaws (Munir, et al. 2018, Munir, et al. 2019). Previous work from our group has shown 60 

that ML and a reflection-mode US sensing technique can be combined to effectively monitor two 61 

important processes in manufacturing: mixing and cleaning of fouling in pipes (Bowler, et al. 2020b, 62 

Escrig, et al. 2020a, Escrig, et al. 2020b). The reflection-mode sensing technique monitors the sound 63 

wave reflected from the vessel wall and process material interface. Mixing is ubiquitous across 64 

process manufacturing, being used to combine materials, suspend solids, provide aeration, promote 65 

heat and mass transfer, and modify material structure (Bowler, et al. 2020a). Being able to 66 

determine when a mixing process is complete would provide the benefit of less over or under mixing 67 

of materials and therefore less off-specification product. Furthermore, this would lead to a reduction 68 

in raw material and energy use. Additionally, accurate prediction of the time remaining until mixing 69 

completion would allow for improved scheduling of batch processes leading to higher productivity. 70 

Processing equipment is usually cleaned using automated Clean-in-Place (CIP) systems. Cleaning 71 

internal surfaces of processing equipment is important to uphold product quality and optimal 72 

operating conditions. However, cleaning comes at a cost of lost production time and consumes a 73 

vast amount of water and energy (Eide, et al. 2003, Pettigrew, et al. 2015). CIP processes operate to 74 

a standard procedure which is designed to clean the materials which are most difficult to remove 75 

from equipment surfaces. This means equipment is often over-cleaned to ensure complete removal 76 

of fouling. A sensor able to detect when the cleaning process was complete would eliminate 77 

unnecessary resource use and maximise production time.  78 

For training, supervised ML models require a reference measurement to label each sensor data point 79 

with a class or value, also termed ground truth data. For both case studies, a camera was used to 80 

determine the time for mixing or cleaning completion. This methodology is appropriate in a 81 

laboratory, but in a factory, reference measurements are seldom available or require considerable 82 

time and cost to obtain, presenting a considerable a barrier to widespread US sensor deployment at 83 

industrial scale. To overcome this, a technique is required that can train an ML model to be used on 84 

a process where no labelled data is available. In addition to transferring models from laboratory to 85 

industrial scale, transferring models for use between different US sensors is also desired. US sensors 86 



are transducers which convert electrical pulses to pressure waves, and vice versa, through 87 

piezoelectric elements (Awad, et al. 2012). Owing to differences arising during manufacture of the 88 

piezoelectric materials, US sensors of the same model can have different central resonant 89 

frequencies and bandwidth. Additionally, US sensors are typically fastened in place with the contact 90 

pressure between the sensor and vessel affecting the sound wave transfer across this material 91 

boundary. Both these factors result in differences in the received US waveform shapes and 92 

magnitudes. Therefore, each ML model is limited to that individual sensor and attachment method, 93 

even when monitoring the same process. As such, a method to transfer ML models developed from 94 

existing US sensor measurements to new sensors which monitor similar processes would prevent 95 

the need for new labelled data for each sensor deployment. 96 

Transfer learning is an area of ML which uses data from a different domain (data distribution) or task 97 

(the prediction being made) to reduce the labelling burden of the target domain or task (Pan and 98 

Yang 2010). For example, Zhu et al. (2021) recently used transfer learning by fine-tuning a pre-99 

trained Convolutional Neural Network (CNN) to classify thyroid and breast lesions in ultrasound 100 

images, and Alguri et al. (2021) used numerical simulations and dictionary learning to produce 101 

ultrasonic guided wave baselines for damage visualisations in test materials. For a similar task, an ML 102 

model trained on source domain data and used to predict on the target domain data will perform 103 

poorly if the data distributions between the two domains are different. Domain adaptation is a 104 

subcategory of transfer learning which alters how an ML model trains on source domain data so that 105 

it also predicts accurately on the target domain data for a similar task (Kouw and Loog 2019). Several 106 

review articles covering aspects of domain adaptation are available to the interested reader: Patel et 107 

al. (2015), Csurka (2017), Wang and Deng (2018), Pan and Yang (2010), Weiss et al (2016). Heimann 108 

et al. (2014) used instance weighting to overcome the differences in feature space density between 109 

synthetic and real data for ultrasound transducer localisation in X-ray fluoroscopy. After applying 110 

principal component analysis on features extracted from radiofrequency ultrasound signals or B-111 

mode images together, Azizi et al. (2017) used a deep belief network to minimise the divergence 112 

between the feature distributions of the two sensing modalities for an unlabelled dataset. Then a 113 

labelled dataset was passed through the pre-trained domain adaptation pipeline and a support 114 

vector machine was trained to classify the data instances. For application in foetal ultrasound 115 

imaging, Meng et al. (2021) utilised mutual information minimisation to disentangle categorical 116 

features and domain features, and used feature clustering to align categorical features from both 117 

domains. For ultrasonic well logging images, Zhang et al. 2021 used an adversarial method to train 118 

an autoencoder to fool a discriminator in being able to distinguish whether the training instance 119 

originated from the source or target domains. Gao et al. (2021) minimised the maximum mean 120 

discrepancy distance metric for domain adaptation between microseismic and pulse-echo data for 121 

ultrasonic logging. These works either use convolutional layers, or, in the case of Azizi et al. (2017), 122 

established feature extraction methodologies. However, in this work, the differences in transducer 123 

construction and attachment, as previously outlined, means that few US waveform features will 124 

follow the same process trajectory in both the source and target domains. Therefore, this work 125 

focuses on investigating methods to extract features which transfer across domains.  126 

This work focuses on transfer learning to an unlabelled target domain using domain adaptation of US 127 

sensor data for the two aforementioned case studies: mixing and cleaning of fouling in pipe test 128 

sections. Two domain adaptation techniques which transfer a small set of features across domains 129 

are compared: a Single Feature (SF) method and Transfer Component Analysis (TCA) using three 130 

features. The SF method uses the energy of the US waveform, a physical measurement of the 131 

acoustic impedance material being monitored. In contrast, 42 waveform features evaluating the 132 

shape of the US waveform are provided to the TCA and three transfer components are produced.  133 



2 Methodology  134 

2.1 Ultrasonic sensors 135 

In this work, the US sensors were used in pulse-echo mode where they transmit a sound wave into 136 

the system and receive the returning waves. The received sound waves have reflected from material 137 

interfaces approximately perpendicular to the initial wave’s direction of travel. The reflected sound 138 

wave of interest is that reflected from the interface between the vessel and the process material. 139 

The magnitude of this reflected sound wave is proportional to the difference in acoustic impedance 140 

between these two neighbouring materials (McClements 1995). This monitoring technique requires 141 

no transmission of the sound wave through the process material being characterised. This is 142 

beneficial as, in a factory setting, process streams usually contain many components such as 143 

particles, bubbles or other heterogeneities which cause scattering, reflection and attenuation of the 144 

transmitted sound wave. This makes through-transmission methods impractical without higher 145 

power, and subsequently higher cost, transducers.  146 

2.2 Mixing case study 147 

Honey-water blending is used as a case study to evaluate these domain adaptation techniques. Full 148 

details of the experimental methodology are provided in Bowler et al. (2020b). Two transducers (5 149 

MHz resonance, M1057, Olympus) were externally mounted to a 250 ml glass mixing vessel. An 150 

overhead stirrer was used to stir the mixture. As honey is miscible in water, the US sensors monitor 151 

the change in component concentration at the sensor measurement area as homogeneity develops. 152 

One sensor was attached in the centre of the vessel base (Central sensor) and another was attached 153 

approximately 2 cm offset from the centre (Non-Central sensor). The experimental equipment is 154 

depicted in Figure 1a. A US box (Lecoeur Electronique) was used to excite the transducers and 155 

digitise the received sound waves. A temperature sensor was attached to the base of the vessel and 156 

connected to a PT-104 Data Logger (Pico Technology) to monitor the temperature local to the 157 

sensors. US signals were acquired continuously from each probe for 1 s. On average, two US 158 

waveforms were recorded during this 1 s interval. The acquired waveforms were averaged to reduce 159 

the impact of signal noise. An example of the received US waveforms for a non-mixed and fully 160 

mixed system are provided in Figure 1b. Two different volumes of pure clear honey were used for 161 

the experiments: 20 ml and 30 ml. 200 ml tap water was used for all runs. The impeller speed was 162 

set to either 200 or 250 rpm. These four parameter permutations were repeated three times whilst 163 

varying the laboratory thermostat set point, producing a set of 12 runs across a range of 164 

temperatures.  The ground truth data for ML model development was obtained by filming the 165 

mixing process with a camera to determine the time when the honey had fully dissolved. This 166 

experimental procedure was followed on two different days to produce two datasets consisting of 167 

12 runs each. Between the two sets of experiments, the sensors were removed and reattached 168 

meaning that their contact and precise location were not the same. This reattachment of the sensors 169 

produces a change in the reflected waveforms, necessitating domain adaptation to perform transfer 170 

learning across the two datasets. Mixing Dataset 1 had a temperature variation of 19.3 °C to 22.1 °C. 171 

Mixing Dataset 2 had a temperature variation of 19.8 °C to 21.2 °C. 172 



  
(a) (b) 

Figure 1. (a) A diagram of the equipment for the mixing experiments; including 250 ml glass vessel, impeller, 173 
and US sensors (Adapted from Bowler, et al. (2020b)). (b) Two received US waveforms corresponding to a non-174 
mixed and a fully mixed system.  175 

Table 1. A summary of the datasets for the mixing experiments, including number of runs and the temperature 176 
range each were conducted over.  177 

Mixing dataset  Runs Temperature range (°C) 

Dataset 1 12 19.3 - 22.1  
Dataset 2 12 19.8 - 21.2  

 178 

2.3 Cleaning case study  179 

Cleaning of pipe fouling was also investigated as a case study for domain adaptation using US sensor 180 

data. The full details of the experimental methodology are provided in Escrig et al. (2019) and Escrig 181 

et al. (2020). Three test sections were used: A rectangular rig with a SS340 bottom plate and clear 182 

PMMA sides, a circular pipe constructed from PMMA, and an opaque, circular pipe constructed from 183 

SS316. Two food materials (tomato paste and concentrated malt) were used to foul the test 184 

sections. Fouling material was placed in the centre of the bottom plate for the rectangular rig and 30 185 

mm from the exit for the pipe sections. The fouling material was then spread with a spatula to form 186 

a layer of approximately 5 mm thickness and left for 10 minutes to dry. Cleaning was performed by 187 

water with a fluid temperature of either 12 °C or 45 °C and a flowrate of 6 l/s. Cleaning was 188 

performed until all the fouling was removed. A minimum of 7 repeats were conducted for all 189 

combinations of test sections, fouling materials and fluid temperatures. For the flat test section, the 190 

same magnetic transducer as for the honey-water mixing experiments was attached to the base 191 

plate. For the pipe sections, different transducers (2 MHz, Yushi, 2P10N) were glued externally to the 192 

bottom of the pipes in the location the fouling material would be placed. The same US box, 193 

temperature sensor, temperature data logger and laptop were used to acquire the data. A camera 194 

was used to record images of the cleaning processes. The camera position was moved depending on 195 

whether the pipe section was clear or opaque, as depicted in Figure 2a. US and temperature data 196 

were recorded every 4 seconds and camera images were recorded every 20 seconds during the 197 

cleaning process. The camera images were used as the ground truth data to label the recorded US 198 

data for ML model development.  199 



 
 

(a) (b) 
Figure 2. (a) A diagram of the equipment for the cleaning experiments including pipe section, camera 200 
positioning, and sensor locations. (b) Two received US waveforms taken from Cleaning Dataset 9 201 
corresponding to a fouled and clean pipe section.  202 

Table 2. A summary of the datasets for the cleaning experiments, including the fouling material used, pipe 203 
construction, cleaning fluid temperature and number of runs. 204 

Cleaning dataset  Fouling material Cleaning fluid temperature  Pipe material Pipe geometry Runs  

Dataset 1 Malt Cold  SS340 (base) Flat  7 
Dataset 2 Malt Hot SS340 (base) Flat 7 
Dataset 3 Tomato Cold  SS340 (base) Flat 7 
Dataset 4 Tomato Hot SS340 (base) Flat 7 
Dataset 5 Malt Cold  PMMA Circular 7 
Dataset 6 Malt Hot PMMA Circular 7 
Dataset 7 Tomato Cold  PMMA Circular 7 
Dataset 8 Tomato Hot PMMA Circular 7 
Dataset 9 Malt Cold  SS316 Circular 7 
Dataset 10 Malt Hot SS316 Circular 7 
Dataset 11 Tomato Cold  SS316 Circular 9 
Dataset 12 Tomato Hot SS316 Circular 7 

 205 

2.4 Machine learning  206 

Classification ML models were trained to predict whether the mixture was non-mixed or fully mixed 207 

and whether the pipe test section is fouled or clean. Regression ML models were trained to predict 208 

the process time remaining until fully mixed or clean. For the honey-water mixing, ML models were 209 

trained on either Dataset 1 or Dataset 2 and used to predict on the other dataset. This was 210 

performed for the Non-Central and Central sensors individually and then by combining data from 211 

both sensors. Therefore, an ML model is trained on a labelled mixing system and transferred to 212 

monitor a similar mixing process which has no labelled data. For the cleaning of pipe fouling, models 213 

were trained on one or several datasets and tested on another. This is representative of training an 214 

ML model on a pipe section with labelled data available and transferring this knowledge to an 215 

unlabelled process pipe where the pipe material, fouling material, cleaning fluid properties and US 216 

sensor could be different.  217 

Shallow ML algorithms, as employed in this study, require features extracted from the US sensor 218 

waveform as inputs. Typical features extracted from US waveforms include the waveform shape (e.g. 219 

skewness, kurtosis, standard deviation) (Caesarendra and Tjahjowidodo 2017), the amplitude at 220 

every sample point in the waveform (Escrig, et al. 2020) or frequency components obtained after 221 

Fourier or Wavelet transforms (Bowler, et al. 2020b). However, US waveforms vary each time a 222 



sensor is attached. This effect is presented in Figure 3, where each US waveform differs despite 223 

using the same sensors, attachment procedure, vessel and process material. Furthermore, Figure 4 224 

compares waveforms obtained from Cleaning Datasets 5 and 9, where different pipe construction 225 

materials and US sensors were used.  226 

  
(a) (b) 

  
(c) (d) 

Figure 3. US waveforms from the mixing experiments corresponding to non-mixed and fully mixed systems. (a) 227 
Dataset 1 Non-Central sensor. (b) Dataset 2 Non-Central sensor. (c) Dataset 1 Central sensor. (d) Dataset 2 228 
Central sensor. 229 

  
(a) (b) 

Figure 4. US waveforms from the pipe cleaning experiments corresponding to fouled and clean pipe section. 230 
(a) Dataset 5 – circular plastic pipe section. (b) Dataset 9 – circular metal pipe section.  231 

In these case studies, the US sensors are monitoring the magnitude of the sound wave reflecting at 232 

the interface between the vessel and process material. The Energy of the US waveform is therefore 233 

an effective measure of this, as it is the squared sum of the waveform amplitude at each sample 234 



point (Equation 1). The waveform Energy has previously been used to monitor these two case 235 

studies in Bowler et al. (2020) and Escrig et al. (2019). However, the obtained US waveforms are 236 

comprised of multiple superimposed sound waves reflecting from different material interfaces. 237 

Therefore, the waveform Energy is not entirely colinear with the change in process material at the 238 

desired measurement area and additional waveform features can be used to unravel this 239 

complexity. Owing to the uniqueness of the waveforms as previously presented, these additional 240 

waveform features are unlikely to follow similar trends for different US waveforms. Therefore, the 241 

SF method only uses the Energy as a description of the waveform. To investigate whether additional 242 

waveform features are required to monitor these case studies, TCA was used to extract three 243 

features, or transfer components, to train the transfer learning models. TCA minimises the distance 244 

between the source and target domain feature spaces using the Maximum Mean Discrepancy and 245 

extracts transfer components that maximise variance across this shared feature space (Pan, et al. 246 

2011). A total of 42 waveform features were inputted into the TCA algorithm (Sections 2.4.1 and 247 

2.4.2). Every run in the source domain dataset was used for model training and every run in the 248 

target domain dataset was used for testing. An additional model, named the Non-Transfer Learning 249 

model, was trained using only the target domain data to provide a comparative result to the transfer 250 

learning models’ accuracy. A k-fold testing procedure was used for the Non-Transfer Learning model, 251 

where k is the number of runs in the dataset. One run was held back for testing and training was 252 

carried out on the remaining runs. The run held back was changed sequentially and the average 253 

accuracy of this procedure was used to provide a measure for model generalisability. Only the 254 

waveform Energy was used as a feature in this model. An overview of this methodology is presented 255 

in Figure 5. All data analysis and ML algorithms were completed in MATLAB R2019a. 256 

 257 

Figure 5. A methodology flow diagram for the three models being compared. The two transfer learning 258 

models, SF and TCA, and the Non-Transfer Learning model.  259 

2.4.1 Features 260 

The waveform energy is the summed squared amplitude of every sample point in a waveform.  261 

𝐸 =  ∑ 𝐴𝑖
2𝑖=𝑆𝑃

𝑖=1             (1) 262 



Where E is the waveform energy, SP is the total number of sample points in the waveform, and Ai is 263 

the amplitude at sample point I (Zhan, et al. 2015).  264 

𝑆𝑅𝐴 =  ∑ √|𝐴𝑖|𝑖=𝑆𝑃
𝑖=1           (2) 265 

Where SRA is the sum root amplitude (Zhan, et al. 2015). 266 

𝑆𝐴𝐴 =  ∑ |𝐴𝑖|𝑖=𝑆𝑃
𝑖=1           (3) 267 

Where SAA is the sum absolute amplitude (Zhan, et al. 2015). 268 

µ =  
∑ 𝐴𝑖

𝑖=𝑆𝑃
𝑖=1

𝑆𝑃
            (4) 269 

𝑆𝑇𝐷 =  √
1

𝑆𝑃
∑ (𝐴𝑖 − µ)2𝑖=𝑆𝑃

𝑖=1          (5) 270 

Where µ is the mean waveform amplitude and STD is the standard deviation (Zhan, et al. 2015). 271 

𝑆 =  
∑ (𝐴𝑖−µ)3𝑖=𝑆𝑃

𝑖=1

𝑆𝑃×𝑆𝑇𝐷3           (6) 272 

Where S is the waveform skewness (Caesarendra and Tjahjowidodo 2017). 273 

𝐾 =  
∑ (𝐴𝑖−µ)4𝑖=𝑆𝑃

𝑖=1

𝑆𝑃×𝑆𝑇𝐷4           (7) 274 

Where K is the waveform kurtosis (Zhan, et al. 2015).  275 

2.4.1.1 Feature gradient  276 

Using the gradient of the waveform features provides a measure of the process trajectory. The 277 

difference between consecutive waveform features were calculated after applying a backwards, 278 

one-sided moving mean. A backwards, one-sized gradient uses only the past process data. The size 279 

of the moving mean was chosen as 5 % of the average run time for the respective dataset. This is to 280 

ensure that the energy gradient is similar feature across the source and target domains.  281 

𝑀𝑀𝑉𝑖 =
1

𝑁
∑ 𝑉𝑖

𝑖−𝑁
𝑖           (8) 282 

𝐺 =  𝑀𝑀𝑉𝑖 −  𝑀𝑀𝑉𝑖−1          (9) 283 

Where G is the gradient of a parameter, MMV is the moving mean value of a parameter, N is the size 284 

of backwards, one-sided moving mean, and V is the original parameter value (Mathworks 2020a, 285 

Mathworks 2020b).  286 

2.4.1.2 Temperature and Mean Run Temperature 287 

As the acoustic properties of materials are highly dependent on temperature (Henning and 288 

Rautenberg 2006), the local temperature measurement was also investigated as a feature. The 289 

additional Temperature feature was the measured temperature at the time each US waveform was 290 

obtained. Furthermore, the Mean Run Temperature (the average temperature for that repeat of the 291 

process) was investigated as the temperature sensors are located external to the process vessels. 292 

Therefore, any change in temperature may not be representative of temperature changes of the 293 

process material.  294 

2.4.2 Discrete waveform analysis  295 

The Discrete Wavelet Transform (DWT) is a method of obtaining the frequency-time information of a 296 

waveform (Mallat and Mallat 1999a). At each decomposition, an orthogonal wavelet transform 297 



function produces a detail and approximate waveform which contain no redundant information 298 

(Mallat 1989). The frequency of the analytical wavelet is successively halved for each decomposition 299 

level. The Symlet 6 wavelet was selected as the Mother wavelet owing to it being the least 300 

asymmetric, and therefore most visually similar to the expected waveforms (Mallat and Mallat 301 

1999b), along with its previous success in analysing US waveforms (Bowler, et al. 2020b). 5 302 

decomposition levels were used, and the previously described waveform features were applied to 303 

each resultant waveform producing a total of 42 features as inputs to the TCA algorithm.  304 

2.4.3 Standardisation 305 

For the SF transfer learning method, the features of each domain were standardised to produce 306 

feature spaces with a mean of 0 and a standard deviation of 1. This was to align and scale the 307 

feature spaces so that the ML model trained on the source domain could predict accurately on the 308 

target domain data. The process of feature standardisation is provided in equations 10-12.  309 

µ =  
∑ 𝑥𝑖

𝑖=𝑛
𝑖=1

𝑛
           (10) 310 

𝜎 =  √
1

𝑛−1
 ∑ |𝑥𝑖 −  µ|2𝑛

𝑖=1          (11) 311 

𝑍 =  
𝑥− µ

𝜎
           (12) 312 

Where µ is the mean of feature x, n is the number of data points for feature x, σ is the standard 313 

deviation of x, and Z is the new standardised feature.  314 

Furthermore, for the honey-water blending experiments, prior to standardisation, the waveform 315 

energy of the first data point in each run was subtracted from all data points of that run so that they 316 

all began at a waveform energy of 0. The process material being measured at the start of each run is 317 

known to be honey as the honey settles to the bottom and the sensors are located on the vessel 318 

base. This is analogous to an industrial process having the same process material located at the 319 

sensor measurement area at the start of each run. This procedure further aligns the feature spaces 320 

despite the wide temperature range the honey-water mixing experiments were conducted over. As 321 

the laboratory set point temperature was not altered for the pipe section cleaning experiments, this 322 

additional operation was not performed. The feature standardisation method for the mixing data 323 

and the cleaning data is presented in Figures 6 and 7, respectively.  324 

 
(a) 



 
(b) 

 
(c) 

 325 

Figure 6. The standardisation procedure for the mixing datasets. (a) All runs from Mixing Datasets 1 and 2. (b) 326 
All runs following the subtraction of the first waveform energy in each run, thereby aligning each of the first 327 
data points. (c) All runs following standardisation.  328 

  
(a) (b) 

Figure 7. The standardisation procedure for the cleaning datasets. (a) All runs from Malt Cold Flat and Malt 329 
Cold Metal datasets. (b) All runs from Malt Cold Plastic and Malt Cold Metal datasets following 330 
standardisation. 331 



2.4.4 Transfer component analysis  332 

TCA attempts to extract transfer components across the source and target domains in a Reproducing 333 

Kernel Hilbert Space using the Maximum Mean Discrepancy (Pan, et al. 2011). Three dimensions, or 334 

transfer components, were selected to allow for comparison against the SF method. The TCA code 335 

provided in the MATLAB domain adaptation toolbox produced by Yan (2020) was used.  336 

2.4.5 Algorithms  337 

2.4.5.1 Artificial neural networks  338 

Artificial neural networks (ANNs) can create linear relationships between combinations of input 339 

variables and the activation function (Jain, et al. 1996). For this reason, despite the few input 340 

features, 5 neurons were used in the hidden layer to ensure production of a linear relationship. The 341 

“trainlm” training function was used for regression models and the “trainscg” training function was 342 

used for the classification models (Mathworks 2020c). To prevent overfitting, the model training was 343 

stopped once the validation loss had increased for 6 consecutive iterations. For each prediction task, 344 

10 neural networks were trained and tested, and the average accuracy was used. This is to account 345 

for the effects of random weight initialisation and that ANNs converge to local minima. 80 % of the 346 

training data was used as a training set and the remaining 20 % was used as the validation set.  347 

2.4.5.2 Long Short-Term Memory Neural Networks  348 

To evaluate whether a more complex process trajectory memory was required rather than the 349 

gradient of the waveform energy alone, Long Short-Term Memory neural networks (LSTMNNs) were 350 

also investigated. LSTMNNs can store representations of all previous time-steps in a process though 351 

updating an internal network state using gate units (Hochreiter and Schmidhuber 1997). No 352 

validation set was used to maximise the training data set size for the LSTMNN. The inputs were 353 

standardised and a mini-batch size of 1 was used. The training was carried out for 600 epochs to 354 

ensure fitting, using the “adam” optimisation algorithm, a learning rate of 0.01, and a gradient 355 

threshold of 1 to prevent problems of exploding gradients. Only 5 hidden units were used in the 356 

LSTM layer, as the processes did not follow a complex sequence. 5 neurons were used in the fully 357 

connected layer to ensure linear fitting of the feature combinations with the activation function.  358 

3 Results and discussion  359 

3.1 Honey-water mixing 360 

For the honey-water mixing experiments, classification ML models were trained to predict whether 361 

the mixture is non-mixed or fully-mixed, and regression models to predict the time remaining until 362 

mixing completion. The models were trained on a source domain dataset (either Dataset 1 or 363 

Dataset 2) and used to predict on the other, target domain dataset.  364 

3.1.1 Classification  365 

Overall, transfer learning models trained for the Non-Central sensor produced poor classification 366 

accuracy (Table 3). The highest classification accuracy for the SF method was 73.9 % and the highest 367 

for TCA was 74.6 %. This is compared to the Non-Transfer Learning model, which produced 368 

accuracies of up to 92.2 %. The cause of the poor classification accuracy for the Non-Central sensor 369 

is due to the difference in the sensor’s location between Dataset 1 and Dataset 2, being closer to the 370 

vessel sides in Dataset 1. As the honey is mixed earlier at the vessel sides than in the centre of the 371 

vessel base, the waveform Energy of the Non-Central sensor in Dataset 1 begins to rise earlier with 372 

respect to the Central sensor. This is shown in Figure 8. There is greater variability in the waveform 373 

Energy for the Non-Central sensor compared with the Central sensor due to the base of the vessel 374 

not being flat at this location, creating discrepancies in the sound wave received by the sensor 375 



(Bowler, et al. 2020b). The point defined as complete mixing (the time at which all honey has 376 

dissolved) is located at the centre of the vessel base and therefore non-local to the Non-Central 377 

sensor. The ML models correlate the sensor data to this non-local phenomenon. If the location of 378 

the sensor changes between the source and target domains, there is now an offset in the prediction. 379 

This demonstrates that if applying transfer learning models to unlabelled target systems which 380 

correlate sensor data to non-local phenomena, this offset in prediction must be similar across 381 

domains.  382 

The SF method produced higher classification accuracies than TCA for all tasks using the Central 383 

sensor, indicating that the waveform Energy alone is more amenable to domain adaptation than the 384 

three transfer components. The SF method was able to produce high prediction accuracies of up to 385 

96.0 % using Dataset 1 as the source domain and Dataset 2 as the target domain. This accuracy was 386 

similar to the Non-Transfer Learning model trained on Dataset 2 which achieved 95.9 %. The Central 387 

sensors were located at the centre of the vessel base for both datasets, and as mixing completion 388 

occurred at the sensor measurement area, there was no offset in the classification model prediction. 389 

Using Dataset 1 as the source domain produced higher classification accuracies as Dataset 1 was 390 

performed over a wider temperature range. This led to more variability in the waveform energy (as 391 

shown in Figure 6) and hence provides a form of regularisation during model training and improved 392 

model generalisability to the target domain. This highlights that source domain datasets should be 393 

gathered over a wide process parameter range to enable the model to generalise. LSTMNNs 394 

produced the highest classification accuracies for all tasks using the Central sensor. The more 395 

complex process trajectory stored by the LSTMNNs was beneficial compared with using the 396 

waveform energy gradient with the ANNs and did not lead to overfitting.  397 

Using both sensors produced lower classification accuracies than using the Central sensor alone due 398 

to incorporating the poorly performing Non-Central sensor. Using the temperature as a feature 399 

produced higher classification accuracies for all domain adaptation tasks, excluding TCA from 400 

Dataset 1 to Dataset 2. This enhanced performance is due to the large effect of temperature on 401 

material acoustic impedance and subsequently the waveform shape and Energy. Furthermore, the 402 

models were also able to learn the relationship of higher temperature reducing the mixing time by 403 

lowering the viscosity of the honey. However, an accuracy of 92.1 % using the Central sensor was 404 

achieved without incorporating the temperature using both the SF method and TCA.  405 

  
(a) (b) 

Figure 8: The waveform Energy of the Non-Central sensor increases earlier with respect to the Central sensor 406 
during the mixing process for Dataset 2 due to the difference in sensor location. (a) Waveform Energy profiles 407 
for the Non-Central and Central sensors during Run 1 of Dataset 1. (b) Waveform energy profiles for the Non-408 
Central and Central sensors during Run 1 of Dataset 2. 409 



Table 3: Classification results for honey-water mixing experiments. Two of the algorithm and feature 410 
combinations which produced the highest accuracy for each model are included; one using the temperature as 411 
feature, and one without. The Additional features column denotes the features inputted into the model other 412 
than the features used for domain adaptation, e.g. the waveform Energy for the SF method, or the three 413 
transfer components used for TCA. G – Gradient of features, T – Temperature, MT – Mean run temperature.  414 

Sensor Source 
domain 

Target 
domain 

Transfer 
learning 
method 

Accuracy 
(% 
correct) 

Algorithm Additional 
features  

Non-
Central  

Dataset 
1 

Dataset 
2 

SF 70.8 ANN G 

73.4 LSTM G, MT 

TCA 74.7 ANN -  

74.7 LSTM G, MT 

NTL 90.3 ANN G 

92.2 LSTM G, T 

Dataset 
2 

Dataset 
1 

SF 72.6 ANN G 

73.9 ANN G, MT 

TCA 68.4 ANN G 

70.3 ANN G, MT 

NTL 90.1 LSTM - 

84.9 LSTM G, T 

Central Dataset 
1 

Dataset 
2 

SF 92.5 LSTM G 

96.0 LSTM G, T 

TCA 92.2 LSTM - 

92.6 LSTM G, MT 

NTL 94.4 LSTM G 

95.9 LSTM T 

Dataset 
2 

Dataset 
1 

SF 92.8 LSTM G 

93.8 LSTM MT 

TCA 87.6 LSTM -  

89.9 LSTM MT 

NTL 96.7 LSTM - 

95.1 LSTM G, T 

Combined Dataset 
1 

Dataset 
2 

SF 92.1 ANN G 

92.2 ANN G, MT 

TCA 92.1 LSTM G  

90.4 LSTM  G, MT 

NTL 95.4 LSTM - 

94.8 LSTM G, MT 

Dataset 
2 

Dataset 
1 

SF 91.6 LSTM - 

91.9 LSTM MT 

TCA 87.3 ANN - 

89.2 LSTM G, MT 

NTL 95.4 ANN G 

95.6 LSTM G, T 

 415 

3.1.2 Regression  416 

Similar to the classification results, domain adaptation of the Non-Central sensor data produced 417 

significantly lower regression accuracies (up to 0.905) than the Non-Transfer Learning models which 418 

were trained on the target domain data (up to 0.978) (Table 4). Again, this is attributed to the 419 

change in sensor position. As the position of the Central sensor has not changed between datasets, 420 

R2 values of up to 0.945 were achieved using the SF method, similar to the Non-Transfer Learning 421 

models’ regression accuracy of up to 0.950.  422 

Again, using temperature as a feature aided prediction accuracy of the Central sensor, most likely 423 

because of the aforementioned effect on temperature on the mixing time. Therefore, these models 424 

were able to infer the time until mixing completion near the beginning of the process, where no 425 



change in acoustic impedance had yet been detected by the Central sensor. In contrast to the 426 

classification tasks, using both sensors together led to greater regression accuracies for the SF 427 

method. This is owed to the greater resolution of the Non-Central sensor near the beginning of the 428 

mixing process, as the honey is first removed from the vessel base in this location, and the Central 429 

sensor’s greater resolution at the end, where the last of the honey is mixed (Bowler, et al. 2020b). As 430 

with the classification models, using Dataset 1 as the source domain and Dataset 2 as the target 431 

domain produced more accurate models for most regression tasks due to the wider temperature 432 

range in Dataset 1. Again, LSTMNN models were more accurate owing to their ability to store 433 

representations of all previous process time-steps and therefore learn more complex feature 434 

trajectories than the ANNs.  435 

Table 4: Regression results for honey-water mixing experiments. Two of the algorithm and feature 436 
combinations which produced the highest accuracy for each model are included; one using the temperature as 437 
feature, and one without. The Additional features column denotes the features inputted into the model other 438 
than the features used for domain adaptation, e.g. the waveform Energy for the SF method, or the three 439 
transfer components used for TCA. G – Gradient of features, T – Temperature, MT – Mean run temperature. 440 

Sensor Source 
domain 

Target 
domain 

Transfer 
learning 
method 

Accuracy 
(R2) 

Algorithm Features  

Non-
Central  

Dataset 
1 

Dataset 
2 

SF 0.903 LSTM - 

0.894 LSTM G, MT 

TCA 0.846 LSTM G  

0.902 LSTM MT 

NTL 0.932 LSTM G 

0.938 LSTM T 

Dataset 
2 

Dataset 
1 

SF 0.877 LSTM - 

0.810 LSTM MT 

TCA 0.883 LSTM -  

0.905 LSTM T 

NTL 0.978 LSTM - 

0.953 LSTM T 

Central Dataset 
1 

Dataset 
2 

SF 0.919 ANN G 

0.945 LSTM G, MT 

TCA 0.942 LSTM - 

0.941 LSTM MT 

NTL 0.931 LSTM - 

0.950 LSTM MT 

Dataset 
2 

Dataset 
1 

SF 0.899 LSTM - 

0.908 LSTM MT 

TCA 0.798 LSTM G 

0.878 LSTM G, T 

NTL 0.930 LSTM G 

0.939 LSTM G, T 

Combined Dataset 
1 

Dataset 
2 

SF 0.942 LSTM G 

0.947 LSTM G, T 

TCA 0.939 LSTM -  

0.929 LSTM MT 

NTL 0.941 LSTM - 

0.946 LSTM MT 

Dataset 
2 

Dataset 
1 

SF 0.930 LSTM  - 

0.921 LSTM T 

TCA 0.673 LSTM G 

0.896 LSTM MT 

NTL 0.981 LSTM G 



0.981 LSTM MT 

 441 

3.2 Cleaning of fouling in pipes 442 

For the cleaning experiments, classification ML models were trained to predict whether the pipe 443 

section is fouled or clean, and regression models predict the time remaining until cleaned. The 444 

models were trained on a source domain dataset, or multiple datasets for the SF method, and used 445 

to predict on another, target domain dataset.  446 

3.2.1 Classification  447 

For all classification tasks, the SF method produced higher classification accuracies than TCA, again 448 

suggesting that a single feature is optimal for domain adaptation of US waveforms (Table 5). For all 449 

classification tasks, excluding Datasets 11 and 12, the SF domain adapted models were either equal 450 

to or more accurate than the Non-Transfer Learning models trained on the target domain data. 451 

Using temperature as a feature was not required for high classification accuracy, and only led to 452 

higher accuracy for the Dataset 12 as the target domain. Combining multiple source domain datasets 453 

for the SF method produced the highest classification accuracy for Datasets 5 and 11 as the target 454 

domain. This is because using multiple source domain datasets provides regularisation of the ML 455 

models by training them to generalise over multiple domains. Similar to the honey-water blending 456 

experiments, LSTMNNs were in general more accurate than ANNs due to their ability to learn 457 

complex process trajectories.  458 

Table 5: Classification results the cleaning of food fouling experiments. Two of the algorithm, feature, and 459 
source domain datasets combinations which produced the highest accuracy for each model are included; one 460 
using the temperature as feature, and one without. The Additional features column denotes the features 461 
inputted into the model other than the features used for domain adaptation, e.g. the waveform Energy for the 462 
SF method, or the three transfer components used for TCA. G – Gradient of features, T – Temperature, MT – 463 
Mean run temperature. 464 

Target 
domain 

Transfer 
learning 
method 

Accuracy 
(% 
correct) 

Source 
domain 

Algorithm Features  

Dataset 
5 

SF 93.6 Datasets 1 
& 2 

LSTM - 

93.2 Datasets 1 
& 2 

LSTM G, T 

TCA 87.1 Dataset 2 LSTM - 

86.7 Dataset 2 ANN MT 

NTL 93.8 - LSTM - 

87.0 - ANN G, T 

Dataset 
6 

SF 96.4 Dataset 4 LSTM - 

95.4 Dataset 3 LSTM G, T 

TCA 92.8 Dataset 2 LSTM - 

93.7 Dataset 4 LSTM T 

NTL 92.2 - LSTM G 

96.1 - LSTM G, T 

Dataset 
7 

SF 95.4 Dataset 2 LSTM  - 

TCA 88.1 Dataset 2 LSTM G 

NTL 91.2 - LSTM - 

Dataset 
8 

SF 96.4 Dataset 3 LSTM G 

TCA 94.1 Dataset 4 ANN G 

NTL 95.6 - LSTM  - 

Dataset 
9 

SF 93.2 Dataset 1 LSTM G 

90.0 Dataset 2 LSTM MT 



TCA 81.0 Dataset 5 LSTM G 

84.8 Dataset 5 LSTM T, G 

NTL 92.2 - LSTM G 

91.8 - LSTM T 

Dataset 
10 

SF 98.4 Dataset 3 LSTM - 

97.5 Dataset 5 LSTM G, T 

TCA 94.7 Dataset 4 ANN G 

95.3 Dataset 4 LSTM G, MT 

NTL 98.2 - LSTM - 

95.4 - LSTM MT 

Dataset 
11 

SF 91.6 Datasets 1 
& 2 

LSTM - 

86.5 Datasets 
1, 2, 5 & 6  

LSTM T 

TCA 81.0 Dataset 1 ANN - 

81.0 Dataset 2 ANN MT 

NTL 95.9 - LSTM - 

95.9 - LSTM T 

Dataset 
12 

SF 90.0 Dataset 7 LSTM G 

92.4 Dataset 5 LSTM MT 

TCA 89.9 Dataset 7 LSTM G 

85.7 Dataset 4 LSTM G, MT 

NTL 95.2 - LSTM - 

96.7 - LSTM G, T 

 465 

3.2.2 Regression  466 

Similar to the classification tasks, the SF method produced higher prediction accuracies than TCA for 467 

most regression tasks (Table 6). For all target domain datasets, except for Dataset 7, the domain 468 

adaptation models produced equally high regression accuracy as the Non-Transfer Learning models 469 

which were trained on the target domain dataset. Unlike the classification tasks where using the 470 

temperature as a feature led to no improvements in prediction accuracy, incorporating the 471 

temperature into the models produced higher regression accuracies for Datasets 5, 6 and 10. This is 472 

because for most of the process there is no change in the material at the sensor measurement area 473 

and so accounting for the effects of temperature on the waveform energy would aid regression 474 

accuracy during these sections of the process. In contrast, the classification tasks are focused on the 475 

section of the process where the fouling material is being removed, resulting in large changes in the 476 

waveform Energy. Other than for Datasets 7 and 8 as the target domain, using multiple datasets as 477 

the source domain produced the highest regression accuracies for the SF method. Again, this is 478 

attributed to the models being trained to generalise across multiple datasets, increasing the 479 

likelihood of accurate prediction of the target dataset. LSTMNNs produced the highest regression 480 

accuracies for every domain adaptation task. This suggests that they were not prone to overfitting 481 

despite their ability to learn complex process trajectories.  482 

Table 6: Regression results for cleaning of food fouling experiments. Two of the algorithm, feature, and source 483 
domain datasets combinations which produced the highest accuracy for each model are included; one using 484 
the temperature as feature, and one without. The Additional features column denotes the features inputted 485 
into the model other than the features used for domain adaptation, e.g. the waveform Energy for the SF 486 
method, or the three transfer components used for TCA. G – Gradient of features, T – Temperature, MT – 487 
Mean run temperature. 488 



Target 
domain 

Transfer 
learning 
method 

Accuracy 
(R2) 

Source 
domain 

Algorithm Features  

Dataset 
5 

SF 0.894 Datasets 1 
& 2 

LSTM G 

0.987 Datasets 1 
& 2 

LSTM G, MT 

TCA 0.861 Dataset 1 LSTM - 

0.820 Dataset 1 LSTM T 

NTL 0.947 - LSTM - 

0.949 - LSTM G, T 

Dataset 
6 

SF 0.998 Datasets 
1, 2, 3 & 4 

LSTM - 

0.999 Datasets 
1, 2, 3 & 4 

LSTM T 

TCA 0.870 Dataset 4 LSTM - 

0.775 Dataset 4 LSTM G, T 

NTL 0.997 - LSTM - 

0.987 - LSTM T 

Dataset 
7 

SF 0.639 Dataset 2 LSTM  G 

TCA 0.747 Dataset 2 LSTM - 

NTL 0.959 - LSTM G 

Dataset 
8 

SF 0.992 Dataset 4 LSTM - 

TCA 0.890 Dataset 3 LSTM - 

NTL 0.983 - LSTM  - 

Dataset 
9 

SF 0.996 Datasets 
1, 2, 5 & 6 

LSTM -  

0.988 Datasets 
1, 2, 5 & 6 

LSTM MT 

TCA 0.962 Dataset 1 LSTM - 

0.922 Dataset 1 LSTM G, MT 

NTL 0.990 - LSTM G 

0.990 - LSTM T 

Dataset 
10 

SF 0.947 Datasets 
5, 6, 7 & 8 

LSTM G 

0.991 Datasets 
1, 2, 3, 4, 
5, 6, 7 & 8 

LSTM MT 

TCA 0.966 Dataset 1  LSTM - 

0.947 Dataset 4 LSTM G, T 

NTL 0.998 - LSTM - 

0.998 - LSTM G, T 

Dataset 
11 

SF 0.983 Datasets 
1, 2, 5 & 6 

LSTM - 

0.956 Datasets 
1, 2, 5 & 6 

LSTM G, MT 

TCA 0.880 Dataset 1 LSTM - 

0.687 Dataset 3 LSTM T 

NTL 0.919 - LSTM - 

0.855 - LSTM G, MT 

Dataset 
12 

SF 0.993 Datasets 
5, 6, 7 & 8 

LSTM - 

0.992 Datasets 
1, 2, 3 & 4 

LSTM G, MT 

TCA 0.937 Dataset 3 LSTM - 

0.890 Dataset 4 LSTM G, T 

NTL 0.948 - LSTM - 

0.902 - LSTM T 



 489 

3.3 Comparison with previous work  490 

Despite using fewer ML model input features and training the models on a different data distribution 491 

to the target domain, the accuracies of the transfer learning models tested in this work are only 492 

slightly lower than our previously published results. For the honey-water mixing experiments, 493 

classification accuracies of 96.0% and regression accuracies of 0.947 are achieved using the SF 494 

method compared with 96.3% and 0.977 (Bowler, et al. 2020b). For the cleaning of pipe fouling, 495 

classification of accuracies of between 91.6-98.4 % are achieved in this work compared with 496 

previous results of 98-100 % (Escrig, et al. 2020a, Escrig, et al. 2020b). These results are similar to the 497 

domain adaptation methodologies used for motor bearing fault diagnosis by vibration signal 498 

monitoring. Wen et al. (2018) achieved classification accuracies averaging 99.79 % on the widely-499 

studied Case Western Reserve University dataset using a Convolutional Neural Network (CNN) based 500 

model. In comparison, Zhang et al. (2018) achieved average classification accuracies of 95.5 % using 501 

a CNN based domain adaptation method across different load domains and Li et al. (2019) achieved 502 

accuracies >92 % using a generative model. Furthermore, Guo et al. (2019) achieved classification 503 

accuracies of up to 89.9 % when transferring models from different machines. This similarity 504 

demonstrates the efficacy of the techniques proposed in this work to monitor processes with no 505 

labelled data available. To improve the accuracy of the trained models, a small set of labelled data in 506 

the target domain would allow for aligning not only the marginal probabilities but also the 507 

conditional probabilities. Furthermore, a small set of labelled data would allow the presented 508 

techniques to be combined with semi-supervised learning approaches to train robust ML models.  509 

4 Conclusion 510 

Sensors are a key technology in the fourth industrial revolution, especially for process manufacturing 511 

sectors which have greater variability in material streams and process conditions than in discrete 512 

manufacturing. However, to fully realise the potential benefits, the problem of training ML models 513 

on limited labelled sensor data must be overcome. This work has compared two domain adaptation 514 

approaches for monitoring processes using US sensors to reduce the burden of data labelling in 515 

factory environments. These were: a Single Feature method and Transfer Component Analysis using 516 

three features. US waveforms are dependent on the sensor used, attachment procedure, and 517 

contact pressure. Therefore, this work investigated transferring a small number of features across 518 

domains.  It was shown that ML models using US sensor data can be trained on a similar task in a 519 

source domain and can accurately predict using sensor data from a target domain. Two case studies 520 

were investigated: honey-water mixing using datasets recorded on different days after sensor 521 

reattachment, and cleaning of fouling in pipe sections of different geometry and construction 522 

materials. Overall, the Single Feature method produced the highest prediction accuracies, indicating 523 

that using the waveform Energy alone is optimal for domain adaptation between US sensors. 524 

Classification accuracies of up to 96.0 % and 98.4 % were achieved for predicting the completion of 525 

mixing or cleaning, and R2 values of up to 0.947 and 0.999 were reached to predict the processing 526 

time remaining for each process, respectively. These results were similar to comparative supervised 527 

models which did not employ transfer learning, indicating that the domain adaptation approach was 528 

successful.  529 

Increasing the feature variability in the source domains aided prediction accuracy by providing 530 

regularisation to the ML models during training. For the honey-water mixing, using a source domain 531 

dataset obtained over a wider temperature range increased prediction accuracy. For cleaning of pipe 532 

fouling, combining multiple source domain datasets trained the model to generalise across domains 533 



and thereby improved performance on the target domain data. For the honey-water mixing 534 

experiments, the Non-Central sensor produced low accuracy predictions because the sensor position 535 

had changed between the source and target domains. When correlating sensor data to phenomena 536 

non-local to the sensor measurement area, an offset between process material changes at the 537 

sensor location and the prediction task is learned. This suggests that when using a transfer learning 538 

model to correlate sensor data to non-local phenomena, the learned offset must be ensured to be 539 

similar across domains. To monitor cleaning of fouling in pipes, it was shown that ML models could 540 

be trained using different US sensors, pipe materials, pipes geometries, fouling materials and 541 

cleaning fluid properties.  542 
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