43 research outputs found

    Risk factors for chest infection in acute stroke: a prospective cohort study

    Get PDF
    <p><b>Background and Purpose:</b> Pneumonia is a major cause of morbidity and mortality after stroke. We aimed to determine key characteristics that would allow prediction of those patients who are at highest risk for poststroke pneumonia.</p> <p><b>Methods:</b> We studied a series of consecutive patients with acute stroke who were admitted to hospital. Detailed evaluation included the modified National Institutes of Health Stroke Scale; the Abbreviated Mental Test; and measures of swallow, respiratory, and oral health status. Pneumonia was diagnosed by set criteria. Patients were followed up at 3 months after stroke.</p> <p><b>Results:</b> We studied 412 patients, 391 (94.9%) with ischemic stroke and 21 (5.1%) with hemorrhagic stroke; 78 (18.9%) met the study criteria for pneumonia. Subjects who developed pneumonia were older (mean±SD age, 75.9±11.4 vs 64.9±13.9 years), had higher modified National Institutes of Health Stroke Scale scores, a history of chronic obstructive pulmonary disease, lower Abbreviated Mental Test scores, and a higher oral cavity score, and a greater proportion tested positive for bacterial cultures from oral swabs. In binary logistic-regression analysis, independent predictors (P<0.05) of pneumonia were age >65 years, dysarthria or no speech due to aphasia, a modified Rankin Scale score ≥4, an Abbreviated Mental Test score <8, and failure on the water swallow test. The presence of 2 or more of these risk factors carried 90.9% sensitivity and 75.6% specificity for the development of pneumonia.</p> <p><b>Conclusions:</b> Pneumonia after stroke is associated with older age, dysarthria/no speech due to aphasia, severity of poststroke disability, cognitive impairment, and an abnormal water swallow test result. Simple assessment of these variables could be used to identify patients at high risk of developing pneumonia after stroke.</p&gt

    Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs

    Get PDF
    Substance abuse and addiction are the most costly of all the neuropsychiatric disorders. In the last decades, much progress has been achieved in understanding the effects of the drugs of abuse in the brain. However, efficient treatments that prevent relapse have not been developed. Drug addiction is now considered a brain disease, because the abuse of drugs affects several brain functions. Neurological impairments observed in drug addicts may reflect drug-induced neuronal dysfunction and neurotoxicity. The drugs of abuse directly or indirectly affect neurotransmitter systems, particularly dopaminergic and glutamatergic neurons. This review explores the literature reporting cellular and molecular alterations reflecting the cytotoxicity induced by amphetamines, cocaine and opiates in neuronal systems. The neurotoxic effects of drugs of abuse are often associated with oxidative stress, mitochondrial dysfunction, apoptosis and inhibition of neurogenesis, among other mechanisms. Understanding the mechanisms that underlie brain dysfunction observed in drug-addicted individuals may contribute to improve the treatment of drug addiction, which may have social and economic consequences.http://www.sciencedirect.com/science/article/B6SYS-4S50K2J-1/1/7d11c902193bfa3f1f57030572f7034

    Xerostomia after acute stroke

    No full text
    No abstract available
    corecore