5,490 research outputs found

    Detection of Circular Polarization in the Galactic Center Black Hole Candidate Sagittarius A*

    Get PDF
    We report here the detection of circular polarization in the Galactic Center black hole candidate, Sagittarius A*. The detection was made at 4.8 GHz and 8.4 GHz with the Very Large Array. We find that the fractional circular polarization at 4.8 GHz is mc=−0.36±0.05m_c=-0.36 \pm 0.05% and that the spectral index of the circular polarization is α=−0.6±0.3\alpha=-0.6 \pm 0.3 (mc∝Μαm_c \propto \nu^{\alpha}). The systematic error in mcm_c is less than 0.04% at both frequencies. In light of our recent lower limits on the linear polarization in Sgr A*, this detection is difficult to interpret with standard models. We consider briefly whether scattering mechanisms could produce the observed polarization. Detailed modeling of the source and the scattering medium is necessary. We propose a simple model in which low energy electrons reduce linear polarization through Faraday depolarization and convert linear polarization into circular polarization. Circular polarization may represent a significant new parameter for studying the obscured centimeter wavelength radio source in Sgr A*.Comment: ApJL accepted, 11 pages including 1 figur

    The Linear Polarization of Sagittarius A* II. VLA and BIMA Polarimetry at 22, 43 and 86 GHz

    Full text link
    We present a search for linear polarization at 22 GHz, 43 GHz and 86 GHz from the nearest super massive black hole candidate, Sagittarius A*. We find upper limits to the linear polarization of 0.2%, 0.4% and 1%, respectively. These results strongly support the conclusion of our centimeter wavelength spectro-polarimetry that Sgr A* is not depolarized by the interstellar medium but is in fact intrinsically depolarized.Comment: Accepted for publication in ApJ, 13 pages, 2 figure

    The Spectrum and Variability of Circular Polarization in Sagittarius A* from 1.4 to 15 GHz

    Get PDF
    We report here multi-epoch, multi-frequency observations of the circular polarization in Sagittarius A*, the compact radio source in the Galactic Center. Data taken from the VLA archive indicate that the fractional circular polarization at 4.8 GHz was -0.31% with an rms scatter of 0.13% from 1981 to 1998, in spite of a factor of 2 change in the total intensity. The sign remained negative over the entire time range, indicating a stable magnetic field polarity. In the Summer of 1999 we obtained 13 epochs of VLA A-array observations at 1.4, 4.8, 8.4 and 15 GHz. In May, September and October of 1999 we obtained 11 epochs of Australia Telescope Compact Array observations at 4.8 and 8.5 GHz. In all three of the data sets, we find no evidence for linear polarization greater than 0.1% in spite of strong circular polarization detections. Both VLA and ATCA data sets support three conclusions regarding the fractional circular polarization: the average spectrum is inverted with a spectral index ~0.5 +/- 0.2; the degree of variability is roughly constant on timescales of days to years; and, the degree of variability increases with frequency. We also observed that the largest increase in fractional circular polarization was coincident with the brightest flare in total intensity. Significant variability in the total intensity and fractional circular polarization on a timescale of 1 hour was observed during this flare, indicating an upper limit to the size of 70 AU at 15 GHz. The fractional circular polarization at 15 GHz reached -1.1% and the spectral index is strongly inverted during this flare. We conclude that the spectrum has two components that match the high and low frequency total intensity components. (abridged)Comment: Accepted for publication in ApJ, 40 pages, 18 figure

    Interferometric Detection of Linear Polarization from Sagittarius A* at 230 GHz

    Get PDF
    We measured the linear polarization of Sagittarius A* to be 7.2 +/- 0.6 % at 230 GHzusing the BIMA array with a resolution of 3.6 x 0.9 arcsec. This confirms the previously reported detection with the JCMT 14-m antenna. Our high resolution observations demonstrate that the polarization does not arise from dust but from a synchrotron source associated with Sgr A*. We see no change in the polarization position angle and only a small change in the polarization fraction in four observations distributed over 60 days. We find a position angle 139 +/- 4 degrees that differs substantially from what was found in earlier JCMT observations at the same frequency. Polarized dust emission cannot account for this discrepancy leaving variability and observational error as the only explanations. The BIMA observations alone place an upper limit on the magnitude of the rotation measure of 2 x 10^6 rad m^-2. These new observations when combined with the JCMT observations at 150, 375 and 400 GHz suggest RM =-4.3 +/- 0.1 x 10^5 rad m^-2. This RM may be caused by an external Faraday screen. Barring a special geometry or a high number of field reversals, this RM rules out accretion rates greater than ~ 10^-7 M_sun y^-1. This measurement is inconsistent with high accretion rates necessary in standard advection dominated accretion flow and Bondi-Hoyle models for Sgr A*. It argues for low accretion rates as a major factor in the overall faintness of Sgr A*.Comment: accepted for publication in ApJ, 18 pages, 4 figure

    Different mechanics of snap-trapping in the two closely related carnivorous plants Dionaea muscipula and Aldrovanda vesiculosa

    Full text link
    The carnivorous aquatic Waterwheel Plant (Aldrovanda vesiculosa L.) and the closely related terrestrial Venus Flytrap (Dionaea muscipula SOL. EX J. ELLIS) both feature elaborate snap-traps, which shut after reception of an external mechanical stimulus by prey animals. Traditionally, Aldrovanda is considered as a miniature, aquatic Dionaea, an assumption which was already established by Charles Darwin. However, videos of snapping traps from both species suggest completely different closure mechanisms. Indeed, the well-described snapping mechanism in Dionaea comprises abrupt curvature inversion of the two trap lobes, while the closing movement in Aldrovanda involves deformation of the trap midrib but not of the lobes, which do not change curvature. In this paper, we present the first detailed mechanical models for these plants, which are based on the theory of thin solid membranes and explain this difference by showing that the fast snapping of Aldrovanda is due to kinematic amplification of the bending deformation of the midrib, while that of Dionaea unambiguously relies on the buckling instability that affects the two lobes.Comment: accepted in Physical Review

    The Evolution of Diffuse Radio Sources in Galaxy Clusters

    Full text link
    We investigate the evolution and number distribution of radio halos in galaxy clusters. Without re-acceleration or regeneration, the relativistic electrons responsible for the diffuse radio emission will lose their energy via inverse-Compton and synchrotron losses in a rather short time, and radio halos will have lifetimes ∌\sim 0.1 Gyr. Radio halos could last for ∌\sim Gyr if a significant level of re-acceleration is involved. The lifetimes of radio halos would be comparable with the cosmological time if the radio-emitting electrons are mainly the secondary electrons generated by pion decay following proton-proton collisions between cosmic-ray protons and the thermal intra-cluster medium within the galaxy clusters. Adopting both observational and theoretical constraints for the formation of radio halos, we calculate the formation rates and the comoving number density of radio halos in the hierarchical clustering scheme. Comparing with observations, we find that the lifetimes of radio halos are ∌\sim Gyr. Our results indicate that a significant level of re-acceleration is necessary for the observed radio halos and the secondary electrons may not be a dominant origin for radio halos.Comment: 22 pages, 6 figures, ApJ, in press (v2:Corrected typos.

    Conedy: a scientific tool to investigate Complex Network Dynamics

    Full text link
    We present Conedy, a performant scientific tool to numerically investigate dynamics on complex networks. Conedy allows to create networks and provides automatic code generation and compilation to ensure performant treatment of arbitrary node dynamics. Conedy can be interfaced via an internal script interpreter or via a Python module

    Virgo cluster early-type dwarf galaxies with the Sloan Digital Sky Survey. IV. The color-magnitude relation

    Full text link
    We present an analysis of the optical colors of 413 Virgo cluster early-type dwarf galaxies (dEs), based on Sloan Digital Sky Survey imaging data. Our study comprises (1) a comparison of the color-magnitude relation (CMR) of the different dE subclasses that we identified in Paper III of this series, (2) a comparison of the shape of the CMR in low and high-density regions, (3) an analysis of the scatter of the CMR, and (4) an interpretation of the observed colors with ages and metallicities from population synthesis models. We find that the CMRs of nucleated (dE(N)) and non-nucleated dEs (dE(nN)) are significantly different from each other, with similar colors at fainter magnitudes (r > 17 mag), but increasingly redder colors of the dE(N)s at brighter magnitudes. We interpret this with older ages and/or higher metallicities of the brighter dE(N)s. The dEs with disk features have similar colors as the dE(N)s and seem to be only slightly younger and/or less metal-rich on average. Furthermore, we find a small but significant dependence of the CMR on local projected galaxy number density, consistently seen in all of u-r, g-r, and g-i, and weakly i-z. We deduce that a significant intrinsic color scatter of the CMR is present, even when allowing for a distance spread of our galaxies. No increase of the CMR scatter at fainter magnitudes is observed down to r = 17 mag (Mr = -14 mag). The color residuals, i.e., the offsets of the data points from the linear fit to the CMR, are clearly correlated with each other in all colors for the dE(N)s and for the full dE sample. We conclude that there must be at least two different formation channels for early-type dwarfs in order to explain the heterogeneity of this class of galaxy. (Abridged)Comment: 17 pages + 12 figures. Accepted for publication in A

    Nonlinear stochastic biasing from the formation epoch distribution of dark halos

    Get PDF
    We propose a physical model for nonlinear stochastic biasing of one-point statistics resulting from the formation epoch distribution of dark halos. In contrast to previous works on the basis of extensive numerical simulations, our model provides for the first time an analytic expression for the joint probability function. Specifically we derive the joint probability function of halo and mass density contrasts from the extended Press-Schechter theory. Since this function is derived in the framework of the standard gravitational instability theory assuming the random-Gaussianity of the primordial density field alone, we expect that the basic features of the nonlinear and stochastic biasing predicted from our model are fairly generic. As representative examples, we compute the various biasing parameters in cold dark matter models as a function of a redshift and a smoothing length. Our major findings are (1) the biasing of the variance evolves strongly as redshift while its scale-dependence is generally weak and a simple linear biasing model provides a reasonable approximation roughly at R\simgt 2(1+z)\himpc, and (2) the stochasticity exhibits moderate scale-dependence especially on R\simlt 20\himpc, but is almost independent of zz. Comparison with the previous numerical simulations shows good agreement with the above behavior, indicating that the nonlinear and stochastic nature of the halo biasing is essentially understood by taking account of the distribution of the halo mass and the formation epoch.Comment: 34 pages, 11 figures, ApJ (2000) in pres

    The Detection of a Red Sequence of Massive Field Galaxies at z~2.3 and its Evolution to z~0

    Get PDF
    The existence of massive galaxies with strongly suppressed star formation at z~2.3, identified in a previous paper, suggests that a red sequence may already be in place beyond z=2. In order to test this hypothesis, we study the rest-frame U-B color distribution of massive galaxies at 2<z<3. The sample is drawn from our near-infrared spectroscopic survey for massive galaxies. The color distribution shows a statistically significant (>3 sigma) red sequence, which hosts ~60% of the stellar mass at the high-mass end. The red-sequence galaxies have little or no ongoing star formation, as inferred from both emission-line diagnostics and stellar continuum shapes. Their strong Balmer breaks and their location in the rest-frame U-B, B-V plane indicate that they are in a post-starburst phase, with typical ages of ~0.5-1.0 Gyr. In order to study the evolution of the red sequence, we compare our sample with spectroscopic massive galaxy samples at 0.02<z<0.045 and 0.6<z<1.0. The rest-frame U-B color reddens by ~0.25 mag from z~2.3 to the present at a given mass. Over the same redshift interval, the number and stellar mass density on the high-mass end (>10^11 Msol) of the red sequence grow by factors of ~8 and ~6, respectively. We explore simple models to explain the observed evolution. Passive evolution models predict too strong d(U-B), and produce z~0 galaxies that are too red. More complicated models that include aging, galaxy transformations, and red mergers can explain both the number density and color evolution of the massive end of the red sequence between z~2.3 and the present.Comment: Accepted for publication in the Astrophysical Journa
    • 

    corecore