8,384 research outputs found

    The Non-homogeneous Poisson Process for Fast Radio Burst Rates

    Get PDF
    This paper presents the non-homogeneous Poisson process (NHPP) for modeling the rate of fast radio bursts (FRBs) and other infrequently observed astronomical events. The NHPP, well-known in statistics, can model changes in the rate as a function of both astronomical features and the details of an observing campaign. This is particularly helpful for rare events like FRBs because the NHPP can combine information across surveys, making the most of all available information. The goal of the paper is two-fold. First, it is intended to be a tutorial on the use of the NHPP. Second, we build an NHPP model that incorporates beam patterns and a power law flux distribution for the rate of FRBs. Using information from 12 surveys including 15 detections, we find an all-sky FRB rate of 586.88 events per sky per day above a flux of 1 Jy (95\% CI: 271.86, 923.72) and a flux power-law index of 0.91 (95\% CI: 0.57, 1.25). Our rate is lower than other published rates, but consistent with the rate given in Champion et al. 2016.Comment: 19 pages, 2 figure

    Eroded Soils Need Phosphorus

    Get PDF
    When the top soil has washed away or blown away—crop yields drop. Most farmers know this. But just why won’t the subsoil produce as well as the original top soil? Is there any particular element that we can add to eroded soils which will step up crop yields? These are questions we have been looking into at the Iowa Station

    The First Detailed X-ray Observations of High-Redshift, Optically-Selected Clusters: XMM-Newton Results for Cl 1324+3011 at z = 0.76 and Cl 1604+4304 at z = 0.90

    Full text link
    We present the first detailed X-ray observations of optically-selected clusters at high redshift. Two clusters, Cl 1324+3011 at z = 0.76 and Cl 1604+4304 at z = 0.90, were observed with XMM-Newton. The optical center of each cluster is coincident with an extended X-ray source whose emission is detected out to a radius of 0.5 Mpc. The emission from each cluster appears reasonably circular, with some indication of asymmetries and more complex morphologies. Similarly to other optically-selected clusters at redshifts of z > 0.4, both clusters are modest X-ray emitters with bolometric luminosities of only Lx = 1.4 - 2.0 x 10^(44) erg/s. We measure gas temperatures of T = 2.88 (+0.71/-0.49) keV for Cl 1324+3011 and 2.51 (+1.05/-0.69) keV for Cl 1604+4304. The X-ray properties of both clusters are consistent with the high-redshift Lx-T relation measured from X-ray-selected samples at z > 0.5. However, based on the local relations, their X-ray luminosities and temperatures are low for their measured velocity dispersions (sigma). The clusters are cooler by a factor of 2 - 9 compared to the local sigma-T relation. We briefly discuss the possible explanations for these results.Comment: 14 pages, 4 figures; accepted for publication in Astrophysical Journal Letters; version with full resolution figures available at http://bubba.ucdavis.edu/~lubin/xmm.pd

    Colors, magnitudes and velocity dispersions in early-type galaxies: Implications for galaxy ages and metallicities

    Get PDF
    We present an analysis of the color-magnitude-velocity dispersion relation for a sample of 39320 early-type galaxies within the Sloan Digital Sky Survey. We demonstrate that the color-magnitude relation is entirely a consequence of the fact that both the luminosities and colors of these galaxies are correlated with stellar velocity dispersions. Previous studies of the color-magnitude relation over a range of redshifts suggest that the luminosity of an early-type galaxy is an indicator of its metallicity, whereas residuals in color from the relation are indicators of the luminosity-weighted age of its stars. We show that this, when combined with our finding that velocity dispersion plays a crucial role, has a number of interesting implications. First, galaxies with large velocity dispersions tend to be older (i.e., they scatter redward of the color-magnitude relation). Similarly, galaxies with large dynamical mass estimates also tend to be older. In addition, at fixed luminosity, galaxies which are smaller, or have larger velocity dispersions, or are more massive, tend to be older. Second, models in which galaxies with the largest velocity dispersions are also the most metal poor are difficult to reconcile with our data. However, at fixed velocity dispersion, galaxies have a range of ages and metallicities: the older galaxies have smaller metallicities, and vice-versa. Finally, a plot of velocity dispersion versus luminosity can be used as an age indicator: lines of constant age run parallel to the correlation between velocity dispersion and luminosity.Comment: 12 pages, 9 figures. Accepted by A

    The Spectrum and Variability of Circular Polarization in Sagittarius A* from 1.4 to 15 GHz

    Get PDF
    We report here multi-epoch, multi-frequency observations of the circular polarization in Sagittarius A*, the compact radio source in the Galactic Center. Data taken from the VLA archive indicate that the fractional circular polarization at 4.8 GHz was -0.31% with an rms scatter of 0.13% from 1981 to 1998, in spite of a factor of 2 change in the total intensity. The sign remained negative over the entire time range, indicating a stable magnetic field polarity. In the Summer of 1999 we obtained 13 epochs of VLA A-array observations at 1.4, 4.8, 8.4 and 15 GHz. In May, September and October of 1999 we obtained 11 epochs of Australia Telescope Compact Array observations at 4.8 and 8.5 GHz. In all three of the data sets, we find no evidence for linear polarization greater than 0.1% in spite of strong circular polarization detections. Both VLA and ATCA data sets support three conclusions regarding the fractional circular polarization: the average spectrum is inverted with a spectral index ~0.5 +/- 0.2; the degree of variability is roughly constant on timescales of days to years; and, the degree of variability increases with frequency. We also observed that the largest increase in fractional circular polarization was coincident with the brightest flare in total intensity. Significant variability in the total intensity and fractional circular polarization on a timescale of 1 hour was observed during this flare, indicating an upper limit to the size of 70 AU at 15 GHz. The fractional circular polarization at 15 GHz reached -1.1% and the spectral index is strongly inverted during this flare. We conclude that the spectrum has two components that match the high and low frequency total intensity components. (abridged)Comment: Accepted for publication in ApJ, 40 pages, 18 figure

    The Planetary Nebula System and Dynamics in the Outer Halo of NGC 5128

    Full text link
    The halos of elliptical galaxies are faint and difficult to explore, but they contain vital clues to both structure and formation. We present the results of an imaging and spectroscopic survey for planetary nebulae (PNe) in the nearby elliptical NGC 5128. We extend the work of Hui et al.(1995) well into the halo of the galaxy--out to distances of 100 and 50 kpc along the major and minor axes. We now know of 1141 PNe in NGC 5128, 780 of which are confirmed. Of these 780 PNe, 349 are new from this survey, and 148 are at radii beyond 20 kpc. PNe exist at distances up to 80 kpc (~15 r_e), showing that the stellar halo extends to the limit of our data. This study represents by far the largest kinematic study of an elliptical galaxy to date, both in the number of velocity tracers and in radial extent. We confirm the large rotation of the PNe along the major axis, and show that it extends in a disk-like feature into the halo. The rotation curve of the stars flattens at ~100 km/s with V/sigma between 1 and 1.5, and with the velocity dispersion of the PNe falling gradually at larger radii. The two-dimensional velocity field exhibits a zero-velocity contour with a pronounced twist, showing that the galaxy potential is likely triaxial in shape, tending toward prolate. The total dynamical mass of the galaxy within 80 kpc is ~5 x 10^{11} M_sun, with M/L_B ~ 13. This mass-to-light ratio is much lower than what is typically expected for elliptical galaxies.Comment: 21 pages, 13 figures (figures 3-8 best viewed in color), accepted for publication in the Astrophysical Journa

    Sunyaev - Zel'dovich fluctuations from spatial correlations between clusters of galaxies

    Full text link
    We present angular power spectra of the cosmic microwave background radiation anisotropy due to fluctuations of the Sunyaev-Zel'dovich (SZ) effect through clusters of galaxies. A contribution from the correlation among clusters is especially focused on, which has been neglected in the previous analyses. Employing the evolving linear bias factor based on the Press-Schechter formalism, we find that the clustering contribution amounts to 20-30% of the Poissonian one at degree angular scales. If we exclude clusters in the local universe, it even exceeds the Poissonian noise, and makes dominant contribution to the angular power spectrum. As a concrete example, we demonstrate the subtraction of the ROSAT X-ray flux-limited cluster samples. It indicates that we should include the clustering effect in the analysis of the SZ fluctuations. We further find that the degree scale spectra essentially depend upon the normalization of the density fluctuations, i.e., \sigma_8, and the gas mass fraction of the cluster, rather than the density parameter of the universe and details of cluster evolution models. Our results show that the SZ fluctuations at the degree scale will provide a possible measure of \sigma_8, while the arc-minute spectra a probe of the cluster evolution. In addition, the clustering spectrum will give us valuable information on the bias at high redshift, if we can detect it by removing X-ray luminous clusters.Comment: 11 pages, 4 figures, submitted to Astrophysical Journa

    Towards a Holistic View of the Heating and Cooling of the Intracluster Medium

    Full text link
    (Abridged) X-ray clusters are conventionally divided into two classes: "cool core" (CC) clusters and "non-cool core" (NCC) clusters. Yet relatively little attention has been given to the origins of this dichotomy and, in particular, to the energetics and thermal histories of the two classes. We develop a model for the entropy profiles of clusters starting from the configuration established by gravitational shock heating and radiative cooling. At large radii, gravitational heating accounts for the observed profiles and their scalings well. However, at small and intermediate radii, radiative cooling and gravitational heating cannot be combined to explain the observed profiles of either type of cluster. The inferred entropy profiles of NCC clusters require that material is preheated prior to cluster collapse in order to explain the absence of low entropy (cool) material in these systems. We show that a similar modification is also required in CC clusters in order to match their properties at intermediate radii. In CC clusters, this modification is unstable, and an additional process is required to prevent cooling below a temperature of a few keV. We show that this can be achieved by adding a self-consistent AGN feedback loop in which the lowest-entropy, most rapidly cooling material is heated so that it rises buoyantly to mix with material at larger radii. The resulting model does not require fine tuning and is in excellent agreement with a wide variety of observational data. Some of the other implications of this model are briefly discussed.Comment: 27 pages, 13 figures, MNRAS accepted. Discussion of cluster heating energetics extended, results unchange

    Is there a Supermassive Black Hole at the Center of the Milky Way?

    Full text link
    This review outlines the observations that now provide an overwhelming scientific case that the center of our Milky Way Galaxy harbors a supermassive black hole. Observations at infrared wavelength trace stars that orbit about a common focal position and require a central mass (M) of 4 million solar masses within a radius of 100 Astronomical Units. Orbital speeds have been observed to exceed 5,000 km/s. At the focal position there is an extremely compact radio source (Sgr A*), whose apparent size is near the Schwarzschild radius (2GM/c^2). This radio source is motionless at the ~1 km/s level at the dynamical center of the Galaxy. The mass density required by these observations is now approaching the ultimate limit of a supermassive black hole within the last stable orbit for matter near the event horizon.Comment: Invited review submitted to International Journal of Modern Physics D; 23 pages; 10 figure
    corecore