754 research outputs found

    The relationship between lower body stiffness and injury incidence in female netballers

    Full text link
    Β© 2017 Informa UK Limited, trading as Taylor & Francis Group. The aim of this study was to provide contemporary information on injury rates in an elite and sub-elite netball population and to explore the relationship between lower body stiffness and lower body injuries. One elite and two sub-elite teams of female netballers (nΒ =Β 29) performed the vertical hop test to assess active lower body stiffness (Kvert) and myometry to assess quasi-static stiffness. Lower body injuries were monitored via self-reporting and liaison with physiotherapists. Twelve lower body non-contact injuries were sustained by 10 players, equating to 11.29 lower body injuries per 1,000 exposure hours. The most commonly injured sites were the calf (33%) and ankle (25%). No significant differences between Kvert of injured and non-injured players were reported, however, injured elite players recorded significantly higher season mean quasi-static stiffness in the soleus (pΒ =Β 0.037) and Achilles (pΒ =Β 0.004) than non-injured elite players. Elite and sub-elite netball players recorded a higher injury incidence than previous reports of injuries in recreational netballers. Within the constraints of the study, relatively high stiffness of the soleus and Achilles appears to be related to lower body non-contact injury incidence in female netballers, particularly at the elite level. These results provide a basis for development of injury prevention strategies

    A Forward-Design Approach to Increase the Production of Poly-3-Hydroxybutyrate in Genetically Engineered Escherichia coli

    Get PDF
    Biopolymers, such as poly-3-hydroxybutyrate (P(3HB)) are produced as a carbon store in an array of organisms and exhibit characteristics which are similar to oil-derived plastics, yet have the added advantages of biodegradability and biocompatibility. Despite these advantages, P(3HB) production is currently more expensive than the production of oil-derived plastics, and therefore, more efficient P(3HB) production processes would be desirable. In this study, we describe the model-guided design and experimental validation of several engineered P(3HB) producing operons. In particular, we describe the characterization of a hybrid phaCAB operon that consists of a dual promoter (native and J23104) and RBS (native and B0034) design. P(3HB) production at 24 h was around six-fold higher in hybrid phaCAB engineered Escherichia coli in comparison to E. coli engineered with the native phaCAB operon from Ralstonia eutropha H16. Additionally, we describe the utilization of non-recyclable waste as a low-cost carbon source for the production of P(3HB)

    The significance of the time interval between antecedent pregnancy and diagnosis of high-risk gestational trophoblastic tumours

    Get PDF
    It is thought that the time interval between the antecedent pregnancy and diagnosis of gestational trophoblastic tumours (GTTs) may influence the outcome of these patients. In this study, we investigate the significance of this time interval. Multivariate analysis was used to investigate if the time interval was of prognostic significance from our cohort of 241 high-risk patients with GTT. Subsequent cutpoint analysis was used to determine an optimal cutpoint for the interval covariate. The outcome of these patients was plotted according to the Kaplan–Meier method. The time interval was of prognostic significance on multivariate analysis. A period of greater than 2.8 years after pregnancy was found to be of most significance. The 5-year overall survival was 62.0% (95% CI: 47–76%) for greater than 2.8 years vs 94% (95% CI: 91–97%) for less than 2.8 years (P<0.001). Multivariate analysis showed the presence of liver metastasis and the number of metastasis was also of prognostic importance. The interval between antecedent pregnancy and diagnosis in high-risk GTT is of prognostic significance. This gives some insight into the pathogenesis of the disease

    Complement-Mediated Virus Infectivity Neutralisation by HLA Antibodies Is Associated with Sterilising Immunity to SIV Challenge in the Macaque Model for HIV/AIDS.

    Get PDF
    Sterilising immunity is a desired outcome for vaccination against human immunodeficiency virus (HIV) and has been observed in the macaque model using inactivated simian immunodeficiency virus (SIV). This protection was attributed to antibodies specific for cell proteins including human leucocyte antigens (HLA) class I and II incorporated into virions during vaccine and challenge virus preparation. We show here, using HLA bead arrays, that vaccinated macaques protected from virus challenge had higher serum antibody reactivity compared with non-protected animals. Moreover, reactivity was shown to be directed against HLA framework determinants. Previous studies failed to correlate serum antibody mediated virus neutralisation with protection and were confounded by cytotoxic effects. Using a virus entry assay based on TZM-bl cells we now report that, in the presence of complement, serum antibody titres that neutralise virus infectivity were higher in protected animals. We propose that complement-augmented virus neutralisation is a key factor in inducing sterilising immunity and may be difficult to achieve with HIV/SIV Env-based vaccines. Understanding how to overcome the apparent block of inactivated SIV vaccines to elicit anti-envelope protein antibodies that effectively engage the complement system could enable novel anti-HIV antibody vaccines that induce potent, virolytic serological response to be developed

    Factors predicting clinically significant fatigue in women following treatment for primary breast cancer

    Get PDF
    Cancer-related fatigue is common, complex, and distressing. It affects 70–100% of patients receiving chemotherapy and a significant number who have completed their treatments. We assessed a number of variables in women newly diagnosed with primary breast cancer (BrCa) to determine whether biological and/or functional measures are likely to be associated with the development of clinically significant fatigue (CSF). Two hundred twenty-three women participated in a study designed to document the impact of the diagnosis and treatment of primary breast cancer on function. Forty-four had complete data on all variables of interest at the time of confirmed diagnosis but prior to treatment (baseline) and β‰₯9Β months post-diagnosis. Objective measures and descriptive variables included history, physical examination, limb volume, hemoglobin, white blood cell count, and glucose. Patient-reported outcomes included a verbal numerical rating of fatigue (0–10, a score of β‰₯4 was CSF), five subscales of the SF-36, Physical Activity Survey, and Sleep Questionnaire. At baseline, the entire cohort (n = 223) and the subset (n = 44) were not significantly different for demographic, biological, and self-reported data, except for younger age (p = 0.03) and ER+ (p = 0.01). Forty-five percent had body mass index (BMI) β‰₯ 25, 52% were post-menopause, and 52% received modified radical mastectomy, 39% lumpectomy, 52% chemotherapy, 68% radiation, and 86% hormonal therapy. Number of patients with CSF increased from 1 at baseline to 11 at β‰₯9Β months of follow-up. CSF at β‰₯9Β months significantly correlated with BMI β‰₯ 25, abnormal white blood cell count, and increase in limb volume and inversely correlated with vigorous activity and physical function (p < 0.05). Fatigue increases significantly following the treatment of BrCa. Predictors of CSF include high BMI and WBC count, increase in limb volume, and low level of physical activity. These are remediable

    Effects of attention and perceptual uncertainty on cerebellar activity during visual motion perception

    Get PDF
    Recent clinical and neuroimaging studies have revealed that the human cerebellum plays a role in visual motion perception, but the nature of its contribution to this function is not understood. Some reports suggest that the cerebellum might facilitate motion perception by aiding attentive tracking of visual objects. Others have identified a particular role for the cerebellum in discriminating motion signals in perceptually uncertain conditions. Here, we used functional magnetic resonance imaging to determine the degree to which cerebellar involvement in visual motion perception can be explained by a role in sustained attentive tracking of moving stimuli in contrast to a role in visual motion discrimination. While holding the visual displays constant, we manipulated attention by having participants attend covertly to a field of random-dot motion or a colored spot at fixation. Perceptual uncertainty was manipulated by varying the percentage of signal dots contained within the random-dot arrays. We found that attention to motion under high perceptual uncertainty was associated with strong activity in left cerebellar lobules VI and VII. By contrast, attending to motion under low perceptual uncertainty did not cause differential activation in the cerebellum. We found no evidence to support the suggestion that the cerebellum is involved in simple attentive tracking of salient moving objects. Instead, our results indicate that specific subregions of the cerebellum are involved in facilitating the detection and discrimination of task-relevant moving objects under conditions of high perceptual uncertainty. We conclude that the cerebellum aids motion perception under conditions of high perceptual demand

    Violation of the transit-time limit toward generation of ultrashort electron bunches with controlled velocity chirp

    Get PDF
    Various methods to generate ultrashort electron bunches for the ultrafast science evolved from the simple configuration of two-plate vacuum diodes to advanced technologies such as nanotips or photocathodes excited by femtosecond lasers. In a diode either in vacuum or of solid-state, the transit-time limit originating from finite electron mobility has caused spatiotemporal bunch-collapse in ultrafast regime. Here, we show for the first time that abrupt exclusion of transit-phase is a more fundamental origin of the bunch-collapse than the transit-time limit. We found that by significantly extending the cathode-anode gap distance, thereby violating the transit-time limit, the conventional transit-time-related upper frequency barrier in diodes can be removed. Furthermore, we reveal how to control the velocity chirp of bunches leading to ballistic bunch-compression. Demonstration of 0.707 THz-, 46.4 femtosecond-bunches from a 50 mu m-wide diode in three-dimensional particle-in-cell simulations shows a way toward simple and compact sources of ultrafast electron bunches for diverse ultrafast sciences.ope
    • …
    corecore