198 research outputs found

    Cooling and control of a cavity optoelectromechanical system

    Get PDF
    We implement a cavity optoelectromechanical system integrating electrical actuation capabilities of nanoelectromechanical devices with ultrasensitive mechanical transduction achieved via intracavity optomechanical coupling. Electrical gradient forces as large as 0.40 mu N are realized, with simultaneous mechanical transduction sensitivity of 1.5 x 10(-18) mHz(-1/2) representing a 3 orders of magnitude improvement over any nanoelectromechanical system to date. Optoelectromechanical feedback cooling is demonstrated, exhibiting strong squashing of the in-loop transduction signal. Out-of-loop transduction provides accurate temperature calibration even in the critical paradigm where measurement backaction induces optomechanical correlations

    Factors affecting the f× Q product of 3C-SiC microstrings: What is the upper limit for sensitivity?

    Get PDF
    © 2016 AIP Publishing LLC. The fn×Q (Hz) is a crucial sensitivity parameter for micro-electro-mechanical sensing. We have recently shown a fn×Q product of ∼1012Hz for microstrings made of cubic silicon carbide on silicon, establishing a new state-of-the-art and opening new frontiers for mass sensing applications. In this work, we analyse the main parameters influencing the frequency and quality factor of silicon carbide microstrings (material properties, microstring geometry, clamping condition, and environmental pressure) and investigate the potential for approaching the theoretical upper limit. We indicate that our previous result is only about a factor 2 lower than the thermoelastic dissipation limit. For fully reaching this upper limit, a substantial reduction of the defects in the silicon carbide thin film would be required, while maintaining a high residual tensile stress in the perfect-clamped strings

    Laser frequency stabilization with toroidal optical microresonators

    Get PDF
    Progress towards semiconductor laser frequency stabilization using optical feedback from microtoroidal resonators is presented. A simple model of the feedback mechanism is provided, and equations of motion describing the system fields are given. Reactive ion etcher based fabrication of microtoroidal resonators with intrinsic quality factors as high as 1.6 x 10(5) is demonstrated. This fabrication technique enables improved silicon surface quality and greater control of the physical structure of the microresonators

    Engineering the Dissipation of Crystalline Micromechanical Resonators

    Full text link
    High quality micro- and nano-mechanical resonators are widely used in sensing, communications and timing, and have future applications in quantum technologies and fundamental studies of quantum physics. Crystalline thin-films are particularly attractive for such resonators due to their prospects for high quality, intrinsic stress and yield strength, and low dissipation. However, when grown on a silicon substrate, interfacial defects arising from lattice mismatch with the substrate have been postulated to introduce additional dissipation. Here, we develop a new backside etching process for single crystal silicon carbide microresonators that allows us to quantitatively verify this prediction. By engineering the geometry of the resonators and removing the defective interfacial layer, we achieve quality factors exceeding a million in silicon carbide trampoline resonators at room temperature, a factor of five higher than without the removal of the interfacial defect layer. We predict that similar devices fabricated from ultrahigh purity silicon carbide and leveraging its high yield strength, could enable room temperature quality factors as high as 6×1096\times10^9Comment: 9 pages 5 figure

    Astronomical Spectroscopy

    Full text link
    Spectroscopy is one of the most important tools that an astronomer has for studying the universe. This chapter begins by discussing the basics, including the different types of optical spectrographs, with extension to the ultraviolet and the near-infrared. Emphasis is given to the fundamentals of how spectrographs are used, and the trade-offs involved in designing an observational experiment. It then covers observing and reduction techniques, noting that some of the standard practices of flat-fielding often actually degrade the quality of the data rather than improve it. Although the focus is on point sources, spatially resolved spectroscopy of extended sources is also briefly discussed. Discussion of differential extinction, the impact of crowding, multi-object techniques, optimal extractions, flat-fielding considerations, and determining radial velocities and velocity dispersions provide the spectroscopist with the fundamentals needed to obtain the best data. Finally the chapter combines the previous material by providing some examples of real-life observing experiences with several typical instruments.Comment: An abridged version of a chapter to appear in Planets, Stars and Stellar Systems, to be published in 2011 by Springer. Slightly revise

    Quantum-Dense Metrology

    Full text link
    Quantum metrology utilizes entanglement for improving the sensitivity of measurements. Up to now the focus has been on the measurement of just one out of two non-commuting observables. Here we demonstrate a laser interferometer that provides information about two non-commuting observables, with uncertainties below that of the meter's quantum ground state. Our experiment is a proof-of-principle of quantum dense metrology, and uses the additional information to distinguish between the actual phase signal and a parasitic signal due to scattered and frequency shifted photons. Our approach can be readily applied to improve squeezed-light enhanced gravitational-wave detectors at non-quantum noise limited detection frequencies in terms of a sub shot-noise veto-channel.Comment: 5 pages, 3 figures; includes supplementary material

    ACE2 gene expression is up-regulated in the human failing heart

    Get PDF
    BACKGROUND: ACE2 is a novel homologue of angiotensin converting enzyme (ACE). ACE2 is highly expressed in human heart and animal data suggest that ACE2 is an essential regulator of cardiac function in vivo. Since overactivity of the renin-angiotensin system contributes to the progression of heart failure, this investigation assessed changes in gene expression of ACE2, ACE, AT(1 )receptor and renin in the human failing heart. METHODS: The sensitive technique of quantitative reverse transcriptase polymerase chain reaction was used to determine the level of mRNA expression of ACE and ACE2 in human ventricular myocardium from donors with non-diseased hearts (n = 9), idiopathic dilated cardiomyopathy (IDC, n = 11) and ischemic cardiomyopathy (ICM, n = 12). Following logarithmic transformation of the data, a one-way analysis of variance was performed for each target gene followed by a Dunnett's test to compare the two disease groups IDC and ICM versus control. RESULTS: As anticipated, ACE mRNA was found to be significantly increased in the failing heart with a 3.1 and 2.4-fold up-regulation found in IDC and ICM relative to non-diseased myocardium. Expression of ACE2 mRNA was also significantly up-regulated in IDC (2.4-fold increase) and ICM (1.8-fold increase) versus non-diseased myocardium. No change in angiotensin AT(1 )receptor mRNA expression was found in failing myocardium and renin mRNA was not detected. CONCLUSIONS: These data suggest that ACE2 is up-regulated in human IDC and ICM and are consistent with the hypothesis that differential regulation of this enzyme may have important functional consequences in heart failure. This strengthens the hypothesis that ACE2 may be a relevant target for the treatment of heart failure and will hopefully spur further studies to clarify the functional effects in human myocardium of ACE2 derived peptides

    Failure patterns and survival outcomes in triple negative breast cancer (TNBC): a 15 year comparison of 448 non-Hispanic black and white women

    Get PDF
    Purpose: Triple negative breast cancer (TNBC) is a distinct subtype of breast cancer with unique pathologic, molecular and clinical behavior. It occurs more frequently in young blacks and has been reported to have a shorter disease-free interval. We undertook this study to analyze the demographic characteristics, failure patterns, and survival outcomes in this disease. Methods: A total of 448 non-Hispanic black and white women were identified over a 15 year period from 1996 to 2011. Demographic and clinical information including age, race, menopausal status, stage, tumor characteristics, and treatments were collected. Fisher’s exact test and multivariable Cox regression were used to compare failure patterns and survival outcomes between races. Results: 49 % (n = 223) were black. 59 % patients were between 41 and 60 years, with 18 % ≤40 years. 57 % were premenopausal and 89 % had grade 3 tumors. Stage II (47 %) was most frequent stage at diagnosis followed by stage III (28 %). 32 % had lymphovascular invasion. Adjusting for age, stage, and grade, there was no difference in survival outcomes (OS, DFS, LFFS, and DFFS) between the two races. 62 (14 %) patients failed locally either in ipsilateral breast or chest wall, and 19 (4 %) failed in the regional lymphatics. Lung (18 %) was the most frequent distant failure site with <12 % each failing in brain, liver and bones. Conclusion: Failure patterns and survival outcomes did not differ by race in this large collection of TNBC cases. Lung was the predominate site of distant failure followed by brain, bone, and liver. Few patients failed in the regional lymphatics

    Photonic quantum technologies

    Full text link
    The first quantum technology, which harnesses uniquely quantum mechanical effects for its core operation, has arrived in the form of commercially available quantum key distribution systems that achieve enhanced security by encoding information in photons such that information gained by an eavesdropper can be detected. Anticipated future quantum technologies include large-scale secure networks, enhanced measurement and lithography, and quantum information processors, promising exponentially greater computation power for particular tasks. Photonics is destined for a central role in such technologies owing to the need for high-speed transmission and the outstanding low-noise properties of photons. These technologies may use single photons or quantum states of bright laser beams, or both, and will undoubtably apply and drive state-of-the-art developments in photonics
    corecore