16,353 research outputs found
Eye-controlled ''teletypewriter''
Oculometer provides dynamic measurement of subject's look direction, and its outputs can be used to generate visual display of his look pattern and/or to cause equipment operation associated with his lookpoint at given times. Measured eye-direction information could be used as control input at man/machine interface
The z=0.8596 Damped Lyman Alpha Absorbing Galaxy Toward PKS 0454+039
We present {\it Hubble Space Telescope} and ground--based data on the
metal line absorption system along the line of sight to PKS
0454+0356. The system is a moderate redshift damped Lyman alpha system, with
~cm as measured from the {\it
Faint Object Spectrograph} spectrum. We also present ground--based images which
we use to identify the galaxy which most probably gives rise to the damped
system; the most likely candidate is relatively underluminous by QSO absorber
standards ( for and \kms Mpc), and
lies kpc in projection from the QSO sightline. Ground--based
measurements of Zn~II, Cr~II, and Fe~II absorption lines from this system allow
us to infer abundances of [Zn/H]=, [Cr/H]=, and [Fe/H]=,
indicating overall metallicity similar to damped systems at , and that
the depletion of Cr and Fe onto dust grains may be even {\it less} important
than in many of the high redshift systems of comparable metallicity. Limits
previously placed on the 21-cm optical depth in the system, together
with our new N(H~I) measurement, suggest a very high spin temperature for the
H~I, K.Comment: changed uuencode header to produce .Z file so that unix uncompress
command will work without modifying file nam
Ion yields and erosion rates for Si1−xGex(0x1) ultralow energy O2+ secondary ion mass spectrometry in the energy range of 0.25–1 keV
We report the SIMS parameters required for the quantitative analysis of Si1−xGex across the range of 0 ≤ x ≤ 1 when using low energy O2+ primary ions at normal incidence. These include the silicon and germanium secondary ion yield [i.e., the measured ion signal (ions/s)] and erosion rate [i.e., the speed at which the material sputters (nm/min)] as a function of x. We show that the ratio Rx of erosion rates, Si1−xGex/Si, at a given x is almost independent of beam energy, implying that the properties of the altered layer are dominated by the interaction of oxygen with silicon. Rx shows an exponential dependence on x. Unsurprisingly, the silicon and germanium secondary ion yields are found to depart somewhat from proportionality to (1−x) and x, respectively, although an approximate linear relationship could be used for quantification across around 30% of the range of x (i.e., a reference material containing Ge fraction x would give reasonably accurate quantification across the range of ±0.15x). Direct comparison of the useful (ion) yields [i.e., the ratio of ion yield to the total number of atoms sputtered for a particular species (ions/atom)] and the sputter yields [i.e., the total number of atoms sputtered per incident primary ion (atoms/ions)] reveals a moderate matrix effect where the former decrease monotonically with increasing x except at the lowest beam energy investigated (250 eV). Here, the useful yield of Ge is found to be invariant with x. At 250 eV, the germanium ion and sputter yields are proportional to x for all x
Stable resonances and signal propagation in a chaotic network of coupled units
We apply the linear response theory developed in \cite{Ruelle} to analyze how
a periodic signal of weak amplitude, superimposed upon a chaotic background, is
transmitted in a network of non linearly interacting units. We numerically
compute the complex susceptibility and show the existence of specific poles
(stable resonances) corresponding to the response to perturbations transverse
to the attractor. Contrary to the poles of correlation functions they depend on
the pair emitting/receiving units. This dynamic differentiation, induced by non
linearities, exhibits the different ability that units have to transmit a
signal in this network.Comment: 10 pages, 3 figures, to appear in Phys. rev.
Teleportation of continuous variable polarisation states
This paper discusses methods for the optical teleportation of continuous
variable polarisation states. We show that using two pairs of entangled beams,
generated using four squeezed beams, perfect teleportation of optical
polarisation states can be performed. Restricting ourselves to 3 squeezed
beams, we demonstrate that polarisation state teleportation can still exceed
the classical limit. The 3-squeezer schemes involve either the use of quantum
non-demolition measurement or biased entanglement generated from a single
squeezed beam. We analyse the efficacies of these schemes in terms of fidelity,
signal transfer coefficients and quantum correlations
A cryogenic seven-element HEMT front end for DSS 13
A cryogenically cooled Ka-band (33.6-GHz), seven-element front-end array for the DSN was built and tested. This system uses seven high electron mobility transistor (HEMT) low-noise amplifiers cooled by a two-stage closed-cycle refrigerator. All system components from the polarizers to the output isolators are cooled to a physical temperature between 18 and 35 K. The noise temperatures of the individual elements range from 64 to 84 K over a 2.75-GHz bandwidth
Statistical mechanics of damage phenomena
This paper applies the formalism of classical, Gibbs-Boltzmann statistical
mechanics to the phenomenon of non-thermal damage. As an example, a non-thermal
fiber-bundle model with the global uniform (meanfield) load sharing is
considered. Stochastic topological behavior in the system is described in terms
of an effective temperature parameter thermalizing the system. An equation of
state and a topological analog of the energy-balance equation are obtained. The
formalism of the free energy potential is developed, and the nature of the
first order phase transition and spinodal is demonstrated.Comment: Critical point appeared to be a spinodal poin
Current and future graphics requirements for LaRC and proposed future graphics system
The findings of an investigation to assess the current and future graphics requirements of the LaRC researchers with respect to both hardware and software are presented. A graphics system designed to meet these requirements is proposed
Collisions of boosted black holes: perturbation theory prediction of gravitational radiation
We consider general relativistic Cauchy data representing two nonspinning,
equal-mass black holes boosted toward each other. When the black holes are
close enough to each other and their momentum is sufficiently high, an
encompassing apparent horizon is present so the system can be viewed as a
single, perturbed black hole. We employ gauge-invariant perturbation theory,
and integrate the Zerilli equation to analyze these time-asymmetric data sets
and compute gravitational wave forms and emitted energies. When coupled with a
simple Newtonian analysis of the infall trajectory, we find striking agreement
between the perturbation calculation of emitted energies and the results of
fully general relativistic numerical simulations of time-symmetric initial
data.Comment: 5 pages (RevTex 3.0 with 3 uuencoded figures), CRSR-107
- …