416 research outputs found

    Characterization of milk fatty acids based on genetic and herd parameters

    Get PDF
    The objective of this study was to characterize the fatty acids (FA) in milk based on genetic and herd parameters to investigate the origin of the different FA in milk. Milk samples of 1912 Dutch Holstein-Friesian cows were analysed for 39 different FA including odd and branched-chain fatty acids. The proportion of variation caused by genetic and herd effects was calculated. In addition, genetic and herd correlations among the fatty acids were estimated and a clustering technique was used to visualise these correlations. The results indicated that in Dutch milk C12:0 is not completely synthesised de novo but also partly blood derived. It was suggested that C20:0 in milk is formed from the action of elongase enzymes on C18:0 and that the odd-chain FA C5:0-C13:0 and a part of C15:0 and C17:0 are synthesised de novo while the other part of C15:0 and C17:0 is blood derived. Furthermore, this work gives an overview of the opportunities to change the concentration of individual FA both by breeding and feeding. It is clearly shown that the extent to which the individual FA can be changed varies greatly and is dependent on the origin of the different FA in milk

    Genetic parameters for milk somatic cell score and relationships with production traits in primiparous dairy sheep

    Get PDF
    A total of 13,066 first-lactation test-day records of 2,277 Valle del Belice ewes from 17 flocks were used to estimate genetic parameters for somatic cell scores (SCS) and milk production traits, using a repeatability test-day animal model. Heritability estimates were low and ranged from 0.09 to 0.14 for milk, fat, and protein yields, and contents. For SCS, the heritability of 0.14 was relatively high. The repeatabilities were moderate and ranged from 0.29 to 0.47 for milk production traits. The repeatability for SCS was 0.36. Flock-test-day explained a large proportion of the variation for milk production traits, but it did not have a big effect on SCS. The genetic correlations of fat and protein yields with fat and protein percentages were positive and high,indicating a strong association between these traits. The genetic correlations of milk production traits with SCS were positive and ranged from 0.16 to 0.31. The results showed that SCS is a heritable trait in Valle del Belice sheep and that single-trait selection for increased milk production will also increase SCS
    corecore