23 research outputs found

    Calorimetric study of water's two glass transitions in the presence of LiCl

    Get PDF
    A DSC study of dilute glassy LiCl aqueous solutions in the water-dominated regime provides direct evidence of a glass-to-liquid transition in expanded high density amorphous (eHDA)-type solutions. Similarly, low density amorphous ice (LDA) exhibits a glass transition prior to crystallization to ice Ic. Both glass transition temperatures are independent of the salt concentration, whereas the magnitude of the heat capacity increase differs. By contrast to pure water, the glass transition endpoint for LDA can be accessed in LiCl aqueous solutions above 0.01 mole fraction. Furthermore, we also reveal the endpoint for HDA's glass transition, solving the question on the width of both glass transitions. This suggests that both equilibrated HDL and LDL can be accessed in dilute LiCl solutions, supporting the liquid-liquid transition scenario to understand water's anomalies.Fil: Ruiz, Guadalupe N.. Universidad de Innsbruck; Austria. Universidad Politécnica de Catalunya; EspañaFil: Amann Winkel, Katrin. AlbaNova University Center; Suecia. Universidad de Innsbruck; AustriaFil: Bove, Livia E.. Université Pierre et Marie Curie; FranciaFil: Corti, Horacio Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad de Buenos Aires; ArgentinaFil: Loerting, Thomas. Universidad de Innsbruck; Austri

    Neutron diffraction on methane and hydrogen hydrates under high pressure

    Get PDF
    Gas hydrates are crystalline solids composed of water and gas. They have attracted considerable attention over the past decade both for their geophysical relevancy [1] and for their possible application to gas storage [2]. Pressure is a key parameter in the study of these systems as gas hydrates are believed to exist at pressure in nature and the gas content is found to increase in gas hydrates as their crystalline structure rearranges upon compression. In addition, high-pressure studies on gas hydrates offer new possibilities to explore water-gas interactions. We will present recent work on methane and hydrogen hydrates at high pressure performed by neutron diffraction in the GPa range [3]. Several issues including the gas content in the different high-pressure structures will be discussed

    In Vivo Water Dynamics in Shewanella oneidensis Bacteria at High Pressure

    Get PDF
    Abstract: Following observations of survival of microbes and other life forms in deep subsurface environments it is necessary to understand their biological functioning under high pressure conditions. Key aspects of biochemical reactions and transport processes within cells are determined by the intracellular water dynamics. We studied water diffusion and rotational relaxation in live Shewanella oneidensis bacteria at pressures up to 500 MPa using quasi-elastic neutron scattering (QENS). The intracellular diffusion exhibits a significantly greater slowdown (by −10–30%) and an increase in rotational relaxation times (+10–40%) compared with water dynamics in the aqueous solutions used to resuspend the bacterial samples. Those results indicate both a pressure-induced viscosity increase and slowdown in ionic/macromolecular transport properties within the cells affecting the rates of metabolic and other biological processes. Our new data support emerging models for intracellular organisation with nanoscale water channels threading between macromolecular regions within a dynamically organized structure rather than a homogenous gel-like cytoplasm

    Damping of sound waves in the terahertz range and strength of the boson peak

    No full text
    International audienceBy applying a new two-step line-shape analysis to inelastic neutron and x-ray scattering spectra of glassy systems, we were able to resolve the acoustic excitations from the low-frequency excess modes and to accurately estimate the damping of sound waves in the terahertz frequency range. Using this approach, we estimated the damping parameter for terahertz acoustic waves in a wide class of chemically different glasses and did a quantitative comparison of the results with prediction of theoretical models. By comparing the estimates of the mean-free path of the acoustic modes in different glasses and the corresponding boson peak strengths, we show the existence of a simple correlation between these two quantities. The relationship between attenuation of the terahertz acoustic modes, strength of the boson peak, and fragility is discusse

    Temperature- and pressure-dependence of the hydrogen bond network in plastic ice VII

    No full text
    We model, via classical molecular dynamics simulations, the plastic phase of ice VII across a wide range of the phase diagram of interest for planetary investigations. Although structural and dynamical properties of plastic ice VII are mostly independent on the thermodynamic conditions, the hydrogen bond network (HBN) acquires a diverse spectrum of topologies distinctly different from that of liquid water and of ice VII simulated at the same pressure. We observe that the HBN topology of plastic ice carries some degree of similarity with the crystal phase, stronger at thermodynamic conditions proximal to ice VII, and gradually lessening when approaching the liquid state. Our results enrich our understanding of the properties of water at high pressure and high temperature and may help in rationalizing the geology of water-rich planets. Published under an exclusive license by AIP Publishing

    Quantum versus classical protons in pure and salty ice under pressure

    Get PDF
    International audienceIt is generally accepted that nuclear quantum effects (NQEs) trigger the transition to the nonmolecular form of ice under increasing pressure. This picture is challenged in salty ice, where Raman scattering measurements up to 130 GPa of molecular ice VII containing NaCl or LiCl impurities show that the transition pressure to the symmetric phase ice X is shifted up by about 30 GPa, even at small salt concentrations. We address the question of how the inclusion of salt induces the drastic reduction of NQEs by selectively including NQEs in ab initio calculations of ice in the presence of distinct ionic impurities. We quantitatively show that this is mainly a consequence of the electric field generated by the ions. We propose a simple model that is able to capture the essence of this phenomenon, generalizing this picture to other charged defects and for any concentration. This result is potentially generalizable to most "dirty" ices in which the electric field due to the doping is much more significant than local lattice distortions

    Performance of ceramic anvils for high pressure neutron scattering

    No full text
    Three kinds of ceramics, zirconia-toughened alumina (ZTA), alumina-toughened zirconia (ATZ) and yttria-stabilized zirconia (YSZ), were tested as anvil materials, mainly for the purpose of neutron scattering study under high pressure. ZTA with non-toroidal anvil profile, having the same sample volume as conventionally used double toroidal anvils, sustained pressures up to 11.9 GPa. This is comparable to anvils made of tungsten carbide (TC) with Ni binder with the same dimensions. ATZ would also be an alternative material to TC with pressure performance comparable to ZTA, whereas YSZ is much weaker than the other two ceramics. The attenuation coefficient for YSZ is significantly smaller than that of TC and similar to ZTA and ATZ, the latter being estimated by attenuation calculations. Neutron diffraction on a sample of lead in YSZ anvils as well as quasi-elastic neutron scattering on liquid water in ZTA also demonstrate the outstanding neutron transparency of these ceramics. The gain factor in count rate is up to one order of magnitude

    The preparation and structure of salty ice VII under pressure

    No full text
    International audienceIt is widely accepted that ice, no matter what phase, is unable to incorporate large amounts of salt into its structure. This conclusion is based on the observation that on freezing of salt water, ice expels the salt almost entirely as brine. Here, we show that this behaviour is not an intrinsic physico-chemical property of ice phases. We demonstrate by neutron diffraction that substantial amounts of dissolved LiCl can be built homogeneously into the ice VII structure if it is produced by recrystallization of its glassy (amorphous) state under pressure. Such 'alloyed' ice VII has significantly different structural properties compared with pure ice VII, such as an 8% larger unit cell volume, 5 times larger displacement factors, an absence of a transition to an ordered ice VIII structure and plasticity. Our study suggests that there could be a whole new class of 'salty' high-pressure ice forms
    corecore