46 research outputs found

    Fungal microbiota from rain water and pathogenicity of Fusarium species isolated from atmospheric dust and rainfall dust

    Get PDF
    In order to determine the presence of Fusarium spp. in atmospheric dust and rainfall dust, samples were collected during September 2007, and July, August, and October 2008. The results reveal the prevalence of airborne Fusarium species coming from the atmosphere of the South East coast of Spain. Five different Fusarium species were isolated from the settling dust: Fusarium oxysporum, F. solani, F. equiseti, F. dimerum, and F. proliferatum. Moreover, rainwater samples were obtained during significant rainfall events in January and February 2009. Using the dilution-plate method, 12 fungal genera were identified from these rainwater samples. Specific analyses of the rainwater revealed the presence of three species of Fusarium: F. oxysporum, F. proliferatum and F. equiseti. A total of 57 isolates of Fusarium spp. obtained from both rainwater and atmospheric rainfall dust sampling were inoculated onto melon (Cucumis melo L.) cv. Piñonet and tomato (Lycopersicon esculentum Mill.) cv. San Pedro. These species were chosen because they are the main herbaceous crops in Almeria province. The results presented in this work indicate strongly that spores or propagules of Fusarium are able to cross the continental barrier carried by winds from the Sahara (Africa) to crop or coastal lands in Europe. Results show differences in the pathogenicity of the isolates tested. Both hosts showed root rot when inoculated with different species of Fusarium, although fresh weight measurements did not bring any information about the pathogenicity. The findings presented above are strong indications that long-distance transmission of Fusarium propagules may occur. Diseases caused by species of Fusarium are common in these areas. They were in the past, and are still today, a problem for greenhouses crops in Almería, and many species have been listed as pathogens on agricultural crops in this region. Saharan air masses dominate the Mediterranean regions. The evidence of long distance dispersal of Fusarium spp. by atmospheric dust and rainwater together with their proved pathogenicity must be taken into account in epidemiological studies

    The role of open-air inhalatoria in the air quality improvement in spa towns

    Full text link
    Objectives: The present study was aimed at evaluating microbiological contamination of air in Ciechocinek and Ino­wro­cław – Polish lowland spa towns. Additionally, the impact of open-air inhalatoria on the quality of air was evaluated. Material and Methods: Air samples were collected seasonally in the urban areas, in the recreation areas and in the vicinity of inhalatoria in both towns using impaction. The numbers of mesophilic bacteria, staphylococci, hemolytic bacteria and actinomycetes were determined on media according to the Polish Standard PN-86/Z-04111/02. The number of moulds was determined on media according to the Polish Standard PN-86/Z-04111/03. Results: While the highest numbers of microorganisms were noted at the sites located in the urban areas, the lowest numbers were noted in the vicinity of the open-air inhalatoria. In all the investigated air samples the values of bioaerosol concentrations were below the recommended TLVs (≤ 5000 CFU×m–3 for both bacteria and fungi in outdoor environments). Location of the sampling site was invariably a decisive factor in determining the number of microorganisms in the air. Conclusions: The aerosol which is formed in the open-air inhalatoria has a positive influence on microbiological air quality. Owing to a unique microclimate and low air contamination, Ciechocinek and Inowrocław comply with all necessary requirements set for health resorts specializing in treating upper respiratory tract infections

    Climate factors influencing bacterial count in background air samples

    No full text
    Total (as opposed to culturable) bacterial number counts are reported for four sites in the United Kingdom measured during campaigns over four separate seasons. These are interpreted in relation to simple climatic factors, i.e. temperature, wind speed and wind direction. Temperature has a marked effect at all four sites with data for a rural coastal site conforming best to a simple exponential model. Data for the other rural and urban locations show a baseline similar to that determined at the coastal rural location, but with some very significant positive excursions. The temperature dependence of bacterial number is found to conform to that typical of bacterial growth rates. At the coastal rural location, bacterial numbers normalised for temperature show no dependence on wind speed whilst at the inland sites there is a decrease with increasing wind speed of the form expected for a large area source. Only one site appeared to show a systematic relationship of bacterial concentrations to wind direction that being a site in the suburbs of Birmingham with highest number concentrations observed on a wind sector approaching from the city centre. PCR techniques have been used to identify predominant types of bacteria and results are presented which show that Bacillus was the dominant genus observed at the three inland sites during the winter and summer seasons. Pseudomonas appeared with comparable frequency at certain sites and seasons. There was in general a greater diversity of bacteria at the coastal site than at the inland sites.Roy M. Harrison, Alan M. Jones, Peter D. E. Biggins, Nigel Pomeroy, Christopher S. Cox, Stephen P. Kidd, Jon L. Hobman, Nigel L. Brown and Alan Beswic
    corecore