2 research outputs found

    Circulating Receptor Activator of Nuclear Factor kB Ligand and triglycerides are associated with progression of lower limb arterial calcification in type 2 diabetes: a prospective, observational cohort study

    No full text
    Background Lower limb arterial calcification is a frequent, underestimated but serious complication of diabetes. The DIACART study is a prospective cohort study designed to evaluate the determinants of the progression of lower limb arterial calcification in 198 patients with type 2 diabetes. Methods Lower limb arterial calcification scores were determined by computed tomography at baseline and after a mean follow up of 31.20 +/- 3.86 months. Serum RANKL (Receptor Activator of Nuclear factor kB Ligand) and bone remodeling, inflammatory and metabolic parameters were measured at baseline. The predictive effect of these markers on calcification progression was analyzed by a multivariate linear regression model. Results At baseline, mean +/- SD and median lower limb arterial calcification scores were, 2364 +/- 5613 and 527 respectively and at the end of the study, 3739 +/- 6886 and 1355 respectively. Using multivariate analysis, the progression of lower limb arterial log calcification score was found to be associated with (beta coefficient [slope], 95% CI, p-value) baseline log(calcification score) (1.02, 1.00-1.04, p <0.001), triglycerides (0.11, 0.03-0.20, p = 0.007), log(RANKL) (0.07, 0.02-0.11, p = 0.016), previous ischemic cardiomyopathy (0.36, 0.15-0.57, p = 0.001), statin use (0.39, 0.06-0.72, p = 0.023) and duration of follow up (0.04, 0.01-0.06, p = 0.004). Conclusion In patients with type 2 diabetes, lower limb arterial calcification is frequent and can progress rapidly. Circulating RANKL and triglycerides are independently associated with this progression. These results open new therapeutic perspectives in peripheral diabetic calcifying arteriopathy. Trial registrationNCT0243123

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
    corecore