893 research outputs found

    Reaching Fathers in Parent Education: Perceptions of Newsletter Value Among Fathers and Father Figures

    Get PDF
    Does parent education pay attention to fathers and their perceptions of educational resources? Not often enough. The NDSU Extension Service developed a parenting newsletter for fathers of young children--Father Times. Findings focused on how fathers of children in kindergarten perceive and value the newsletter as a resource. Results showed that fathers: (1) appreciated the layout, readability, and usefulness of the newsletter; (2) valued the newsletter more highly than other formal sources of information; and (3) indicated the features and topics most valuable to them. A newsletter for fathers can be a unique resource for reaching fathers in parent education

    The liquid helix

    Get PDF
    From everyday experience, we all know that a solid edge can deflect a liquid flowing over it significantly, up to the point where the liquid completely sticks to the solid. Although important in pouring, printing and extrusion processes, there is no predictive model of this so-called "teapot effect". By grazing vertical cylinders with inclined capillary liquid jets, we here use the teapot effect to attach the jet to the solid and form a new structure: the liquid helix. Using mass and momentum conservation along the liquid stream, we first quantitatively predict the shape of the helix and then provide a parameter-free inertial-capillary adhesion model for the jet deflection and critical velocity for helix formation.Comment: Accepted in Physical Review Letters, author versio

    The Antares Neutrino Telescope and Multi-Messenger Astronomy

    Full text link
    Antares is currently the largest neutrino telescope operating in the Northern Hemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources. Such observations would provide important clues about the processes at work in those sources, and possibly help solve the puzzle of ultra-high energy cosmic rays. In this context, Antares is developing several programs to improve its capabilities of revealing possible spatial and/or temporal correlations of neutrinos with other cosmic messengers: photons, cosmic rays and gravitational waves. The neutrino telescope and its most recent results are presented, together with these multi-messenger programs.Comment: 10 pages, 7 figures. Proceedings of the 14th Gravitational Wave Data Analysis Workshop (GWDAW-14) in Roma - January 26th-29th, 201

    Technology acceptance models in gerontechnology

    Full text link

    The Highest Energy Neutrinos

    Full text link
    Measurements of the arrival directions of cosmic rays have not revealed their sources. High energy neutrino telescopes attempt to resolve the problem by detecting neutrinos whose directions are not scrambled by magnetic fields. The key issue is whether the neutrino flux produced in cosmic ray accelerators is detectable. It is believed that the answer is affirmative, both for the galactic and extragalactic sources, provided the detector has kilometer-scale dimensions. We revisit the case for kilometer-scale neutrino detectors in a model-independent way by focussing on the energetics of the sources. The real breakthrough though has not been on the theory but on the technology front: the considerable technical hurdles to build such detectors have been overcome. Where extragalactic cosmic rays are concerned an alternative method to probe the accelerators consists in studying the arrival directions of neutrinos produced in interactions with the microwave background near the source, i.e. within a GZK radius. Their flux is calculable within large ambiguities but, in any case, low. It is therefore likely that detectors that are larger yet by several orders of magnitudes are required. These exploit novel techniques, such as detecting the secondary radiation at radio wavelengths emitted by neutrino induced showers.Comment: 16 pages, pdflatex, 7 jpg figures, ICRC style files included. Highlight talk presented at the 30th International Cosmic Ray Conference, Merida, Mexico, 200

    Age Changes in the Distribution of Visual Attention

    Full text link

    Search for neutrinos from the tidal disruption events AT2019dsg and AT2019fdr with the ANTARES telescope

    Get PDF
    The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), Romania; Ministerio de Ciencia e Innovacion (MCI) and Agencia Estatal de Investigacion: Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCI/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider, Junta de Andalucia (ref. SOMM17/6104/UGR and A-FQM-053-UGR18), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119) and GenT (ref. CIDEGENT/2018/034) programs, Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities.On October 1, 2019, the IceCube Collaboration detected a muon track neutrino with high probability of being of astrophysical origin, IC191001A. After a few hours, the tidal disruption event (TDE) AT2019dsg, observed by the Zwicky Transient Facility (ZTF), was indicated as the most likely counterpart of the IceCube track. More recently, the followup campaign of the IceCube alerts by ZTF suggested a second TDE, AT2019fdr, as a promising counterpart of another IceCube muon track candidate, IC200530A, detected on May 30, 2020. These are the second and third associations between astrophysical sources and high-energy neutrinos after the compelling identification of the blazar TXS 0506+056. Here, the search for ANTARES neutrinos from the directions of AT2019dsg and AT2019fdr using a time-integrated approach is presented. As no significant evidence for space clustering is found in the ANTARES data, upper limits on the one-flavour neutrino flux and fluence are set.Centre National de la Recherche Scientifique (CNRS)French Atomic Energy CommissionCommission Europeenne (FEDER fund and Marie Curie Program)Institut Universitaire de France (IUF)LabEx UnivEarthS ANR-10-LABX-0023 ANR-18-IDEX-0001Region Ile-de-FranceRegion Grand-EstRegion Provence-Alpes-Cote d'AzurFederal Ministry of Education & Research (BMBF)Istituto Nazionale di Fisica Nucleare (INFN)Netherlands Organization for Scientific Research (NWO)Netherlands GovernmentCouncil of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, RussiaConsiliul National al Cercetarii Stiintifice (CNCS)Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii (UEFISCDI)Spanish GovernmentAgencia Estatal de Investigacion (MCI/FEDER) PGC2018-096663-B-C41 PGC2018-096663-A-C42 PGC2018-096663-B-C43 PGC2018-096663-B-C44Severo Ochoa Centre of Excellence and MultiDark Consolider, Junta de Andalucia SOMM17/6104/UGR A-FQM-053-UGR18Generalitat Valenciana GRISOLIA/2018/119 CIDEGENT/2018/034Ministry of Higher Education, Scientific Research and Professional Training, Morocc
    • …
    corecore