42 research outputs found

    The biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces graminis var. tritici on wheat roots

    Get PDF
    The main effects of antagonistic rhizobacteria on plant pathogenic fungi are antibiosis, fungistasis or an indirect constraint through the induction of a plant defence response. To explore different biocontrol mechanisms, an in vitro confrontation assay was conducted with the rhizobacterium Pseudomonas fluorescens Pf29Arp as a biocontrol agent of the fungus Gaeumannomyces graminis var. tritici (Ggt) on wheat roots. In parallel with the assessment of disease extension, together with the bacterial and fungal root colonization rates, the transcript levels of candidate fungal pathogenicity and plant-induced genes were monitored during the 10-day infection process. The bacterial inoculation of wheat roots with the Pf29Arp strain reduced the development of Ggt-induced disease expressed as attack frequency and necrosis length. The growth rates of Ggt and Pf29Arp, monitored through quantitative polymerase chain reaction of DNA amounts with a part of the Ggt 18S rDNA gene and a specific Pf29Arp strain detection probe, respectively, increased throughout the interactions. Bacterial antagonism and colonization had no significant effect on root colonization by Ggt. The expression of fungal and plant genes was quantified in planta by quantitative reverse transcription-polymerase chain reaction during the interactions thanks to the design of specific primers and an innovative universal reference system. During the early stages of the tripartite interaction, several of the fungal genes assayed were down-regulated by Pf29Arp, including two laccases, a β-1,3-exoglucanase and a mitogen-activated protein kinase. The plant host glutathione-S-transferase gene was induced by Ggt alone and up-regulated by Pf29Arp bacteria in interaction with the pathogen. We conclude that Pf29Arp antagonism acts through the alteration of fungal pathogenesis and probably through the activation of host defences

    Layers response to a suboptimal diet through phenotype and transcriptome changes in four tissues

    Get PDF
    Poultry meat and eggs are major sources of nutrients in the human diet. The long production career of laying hens expose them to biotic or abiotic stressors, lowering their production. Understanding the mechanisms of adaptation to stress is crucial for selecting robust animals and meeting the needs of a growing human population. In this study, financed by the French ChickStress and the European Feed-a-Gene (grant agreement no. 633531) programs, we compared the effects of a 15%-energy-reduced diet (feed stress, FS) vs a commercial diet (control, CT) on phenotypic traits and adipose, blood, hypothalamus and liver transcriptomes in two feed-efficiency-diverging lines. Phenotypic traits showed differences between lines or diets, but no line × diet interaction. In the FS group, feed intake (FI) increased and hens had lower body- and abdominal adipose weight, compared to CT group. We found no differences in egg production or quality. At the transcriptomic level, 16,461 genes were expressed in one or more tissues, 41% of which were shared among tissues. We found differentially expressed genes between lines or diet in all tissues, and almost no line × diet interactions. Focusing on diet, adipose and liver transcriptomes were unaffected. In blood, pathways linked to amino acids, monosaccharides, and steroid metabolism were affected, while in the hypothalamus, changes were observed in fatty acid metabolism and endocannabinoid signalling. Given the similarities in egg production, the FS animals seem to have adapted to the stress by increasing FI and by mobilizing adipose reserves. Increase in FI did not appear to affect liver metabolism, and the mobilization of adipose reserves was apparently not driven at the transcriptomic level. In blood, the pathways linked to metabolic processes suggest a metabolic role for this tissue in chicken, whose erythrocytes are nucleated and contain mitochondria. FI increase might be linked to the hypothalamic pathway of endocannabinoid signalling, which are lipid-based neurotransmitters, notably involved in the regulation of appetite

    Transcriptomics data of liver and adipose tissue highlight lncRNAs as candidates for the lipid metabolism regulation in broilers

    No full text
    Broilers’ body fat is not valued by food industry which must remove fat deposits on broilers’ carcass during slaughter stages. Adiposity variability has a multifactorial origin with a genetic part and genes which regulate lipid metabolism are not all known yet. The aim of this study is to contribute to a better knowledge of these regulatory genes in chicken, and particularly long noncoding (lncRNA) genes, which regulate genes expression implied in a lot of diseases and metabolic processes. Therefore, we used two broilers lines (lean/fat lines) divergently selected on abdominal fat weight and fed with two different diets (high/low fat/fibers). The genotype factor leads to a differential expression (DE) of genes involved in the cholesterol synthesis and the diet factor in the hepatic fatty acid synthesis and secretion. We used RNA‑seq data from two metabolic tissues: 16 livers and 16 adipose tissues and FEELnc has classified more than 6000 expressed lncRNAs. DE analyzes showed 160 (vs. 258) and 266 (vs. 396) lncRNA genes up- and down-regulated respectively between the lean and fat lines in liver (vs. adipose tissue). 30 (vs. 5) and 101 (vs. 1) lncRNA genes are DE between the low and the high fat diet. Amongst them, around 80 lncRNA genes are divergently localized with their nearest coding gene and potentially share a bidirectional promoter. We found some interesting examples concerning key enzymes in cholesterol and fatty acid synthesis for our both factors, genotype and diet which are good candidates for the lipid metabolism regulation in chicken

    Long noncoding RNAs in lipid metabolism: literature review and conservation analysis across species

    Get PDF
    Background Lipids are important for the cell and organism life since they are major components of membranes, energy reserves and are also signal molecules. The main organs for the energy synthesis and storage are the liver and adipose tissue, both in humans and in more distant species such as chicken. Long noncoding RNAs (lncRNAs) are known to be involved in many biological processes including lipid metabolism. Results In this context, this paper provides the most exhaustive list of lncRNAs involved in lipid metabolism with 60 genes identified after an in-depth analysis of the bibliography, while all “review” type articles list a total of 27 genes. These 60 lncRNAs are mainly described in human or mice and only a few of them have a precise described mode-of-action. Because these genes are still named in a non-standard way making such a study tedious, we propose a standard name for this list according to the rules dictated by the HUGO consortium. Moreover, we identified about 10% of lncRNAs which are conserved between mammals and chicken and 2% between mammals and fishes. Finally, we demonstrated that two lncRNA were wrongly considered as lncRNAs in the literature since they are 3′ extensions of the closest coding gene. Conclusions Such a lncRNAs catalogue can participate to the understanding of the lipid metabolism regulators; it can be useful to better understand the genetic regulation of some human diseases (obesity, hepatic steatosis) or traits of economic interest in livestock species (meat quality, carcass composition). We have no doubt that this first set will be rapidly enriched in coming years

    Effect of wheat roots infected with the pathogenic <em>fungus gaeumannomyces graminis</em> var. tritici on gene expression of the biocontrol bacterium pseudomonas fluorescens Pf29Arp

    No full text
    International audienceTraits contributing to the competence of biocontrol bacteria to colonize plant roots are often induced in the rhizosphere in response to plant components. These interactions have been studied using the two partners in gnotobiotic systems. However, in nature, beneficial or pathogenic fungi often colonize roots. Influence of these plant–fungus interactions on bacterial behavior remains to be investigated. Here, we have examined the influence of colonization of wheat roots by the take-all fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. Bacteria were inoculated onto healthy, early G. graminis var. tritici-colonized and necrotic roots and transcriptomes were compared by shotgun DNA microarray. Pf29Arp decreased disease severity when inoculated before the onset of necrosis. Necrotic roots exerted a broader effect on gene expression compared with early G. graminis var. tritici-colonized and healthy roots. A gene encoding a putative type VI secretion system effector was only induced in necrotic conditions. A common pool of Pf29Arp genes differentially expressed on G. graminis var. tritici-colonized roots was related to carbon metabolism and oxidative stress, with a highest fold-change with necrosis. Overall, the data showed that the association of the pathogenic fungus with the roots strongly altered Pf29Arp adaptation with differences between early and late G. graminis var. tritici infection steps
    corecore