13 research outputs found

    Torsors on loop groups and the Hitchin fibration

    Full text link
    In his proof of the fundamental lemma, Ng\^o established the product formula for the Hitchin fibration over the anisotropic locus. One expects this formula over the larger generically regular semisimple locus, and we confirm this by deducing the relevant vanishing statement for torsors over loop groups R((t))R((t)) from a general formula for Pic(R((t)))\mathrm{Pic}(R((t))). In the build up to the product formula, we present general algebraization, approximation, and invariance under Henselian pairs results for torsors, give short new proofs for the Elkik approximation theorem and the Chevalley isomorphism g//G≅t/W\mathfrak{g}//G \cong \mathfrak{t}/W, and improve results on the geometry of the Chevalley morphism g→g//G\mathfrak{g} \rightarrow \mathfrak{g}//G.Comment: 62 page

    On the formal arc space of a reductive monoid

    Full text link
    Let XX be a scheme of finite type over a finite field kk, and let LX\mathcal L X denote its arc space; in particular, LX(k)=X(k[[t]])\mathcal L X(k) = X(k[[t]]). Using the theory of Grinberg, Kazhdan, and Drinfeld on the finite-dimensionality of singularities of LX\mathcal L X in the neighborhood of non-degenerate arcs, we show that a canonical "basic function" can be defined on the non-degenerate locus of LX(k)\mathcal L X(k), which corresponds to the trace of Frobenius on the stalks of the intersection complex of any finite-dimensional model. We then proceed to compute this function when XX is an affine toric variety or an "LL-monoid". Our computation confirms the expectation that the basic function is a generating function for a local unramified LL-function; in particular, in the case of an LL-monoid we prove a conjecture formulated by the second-named author.Comment: Erratum added at the end, to account for a shift in the argument of the L-functio

    Geometrisation of the orbital side of the Trace Formula

    No full text
    Ce travail de thèse a pour but de construire et d’étudier une fibration de Hitchin pour les groupes qui apparaît naturellement lorsque l’on essaie de géométriser la formule des traces. On commence par construire une telle fibration en utilisant le semi-groupe de Vinberg. Sur ce semi-groupe de Vinberg, on montre qu’il existe un certain morphisme « polynôme caractéristique » muni d’une section naturelle, de même que dans le cas des algèbres de Lie. On montre également que l’on peut construire un centralisateur régulier au-dessus de cette base des polynômes caractéristiques qui est un schéma en groupes commutatif et lisse.On s’intéresse alors à des variantes pour les groupes des fibres de Springer affines pour lesquelles on remarque que l’introduction du semi-groupe de Vinberg permet d’obtenir une condition d’intégralité analogue à celle de Kazhdan-Lusztig. Ces fibres de Springer affines sont des analogues locaux des fibres de Hitchin. On obtient alors une formule de dimension pour ces fibres.Dans un troisième temps, on s’intéresse à l’aspect global de cette fibration pour laquelle on donne une interprétation modulaire et sur laquelle on construit l’action d’un champ de Picard, issu du centralisateur régulier. L’espace total de cette fibration étant en général singulier, nous étudions son complexe d’intersection. Cet espace de Hitchin s’obtient naturellement comme l’intersection du champ de Hecke avec la diagonale du champ des G-torseurs et on démontre que sur un ouvert suffisamment gros de la base de Hitchin, le complexe d’intersection de l’espace de Hitchin s’obtient par restriction de celui du champ de Hecke corrrespondant.Enfin, dans la dernière partie de cette thèse, on établit un théorème du support dans le cas où l’espace total est singulier analogue à celui de Ngô et l’on démontre que, dans le cas de la fibration de Hitchin, les supports qui interviennent sont reliés aux strates endoscopiques.This main goal of this work is to construct and study the properties of Hitchin fibration for groups which appears naturally when we try to geometrize the trace formula. We begin by constructing this fibration using the Vinberg’s semigroup. On this semigroup, we show that there exists a characteristic polynomial morphism equipped with a natural section, analog at the Kostant’s one in the case of Lie algebras. We also show that there exists on the base of characteristic polynomials a regular centralizer scheme, which is a smooth commutative group scheme.Then, we are interested in some variant of affine Springer fibers, for which we see that the Vinberg’s semigroup appears naturally to obtain an integrality condition analog to Kazhdan-Lusztig’s one. These affine Springer fibers are local incarnation of Hitchin fibers.In a third time, we go back to the global case and give a modular interpretation of this new Hitchin fibration on which we construct an action of a Picard stack, coming from the regular centralizer.The total space of this fibration, even on the generically regular semisimple locus will be singular and we want to understand his intersection complex. This space can be obtained as the intersection of the Hecke stack with the diagonal of the stack of G-bundles and we show that on a sufficiently big open subset of the Hitchin base, the intersection complex of the Hitchin’s space is the restriction of the corresponding intersection complex on the Hecke stack.Finally, in the last part of this work, we establish a support theorem in the case of a singular total space, generalizing Ngo’s theorem et we show that in the case of Hitchin fibration, the supports that appear are related to the endoscopic strata

    Support singulier et homologie des fibres de Springer affines

    Full text link
    We develop a theory of singular support for various infinite dimensional stacks and establish several functoriality properties. Then we apply this theory to compute the singular support of the Grothendieck-Springer affine Springer sheaf and rely it to the local constancy conjecture of Goresky-Kottwitz-McPherson on the homology of affine Springer fibers along the root valuation stratification.Comment: Arguments shortened, streamlined version, in French languag

    Torsors on loop groups and the Hitchin fibration

    No full text
    International audienceIn his proof of the fundamental lemma, Ng\^o established the product formula for the Hitchin fibration over the anisotropic locus. One expects this formula over the larger generically regular semisimple locus, and we confirm this by deducing the relevant vanishing statement for torsors over loop groups R((t))R((t)) from a general formula for Pic(R((t)))\mathrm{Pic}(R((t))). In the build up to the product formula, we present general algebraization, approximation, and invariance under Henselian pairs results for torsors, give short new proofs for the Elkik approximation theorem and the Chevalley isomorphism g//G≅t/W\mathfrak{g}//G \cong \mathfrak{t}/W, and improve results on the geometry of the Chevalley morphism g→g//G\mathfrak{g} \rightarrow \mathfrak{g}//G

    Torsors on loop groups and the Hitchin fibration

    No full text
    51 pagesIn his proof of the fundamental lemma, Ng\^o established the product formula for the Hitchin fibration over the anisotropic locus. One expects this formula over the larger generically regular semisimple locus, and we confirm this by deducing the relevant vanishing statement for torsors over loop groups R((t))R((t)) from a general formula for Pic(R((t)))\mathrm{Pic}(R((t))). In the build up to the product formula, we present general algebraization, approximation, and invariance under Henselian pairs results for torsors, give short new proofs for the Elkik approximation theorem and the Chevalley isomorphism g//G≅t/W\mathfrak{g}//G \cong \mathfrak{t}/W, and improve results on the geometry of the Chevalley morphism g→g//G\mathfrak{g} \rightarrow \mathfrak{g}//G
    corecore