61 research outputs found

    The SUMO Ligase Protein Inhibitor of Activated STAT 1 (PIAS1) is a constituent PML-NB protein that contributes to the intrinsic antiviral immune response to herpes simplex virus 1 (HSV-1)

    Get PDF
    Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukaemia (PML)-nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signalling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase Protein Inhibitor of Activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well characterized PML-NB proteins. In contrast to Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation

    The HSV-1 ubiquitin ligase ICP0: modifying the cellular proteome to promote infection

    Get PDF
    Herpes simplex virus 1 (HSV-1) hijacks ubiquitination machinery to modify the cellular proteome to create an environment permissive for virus replication. HSV-1 encodes its own RING-finger E3 ubiquitin (Ub) ligase, Infected Cell Protein 0 (ICP0), that directly interfaces with component proteins of the Ub pathway to inactivate host immune defences and cellular processes that restrict the progression of HSV-1 infection. Consequently, ICP0 plays a critical role in the infectious cycle of HSV-1 that is required to promote the efficient onset of lytic infection and productive reactivation of viral genomes from latency. This review will describe the current knowledge regarding the biochemical properties and known substrates of ICP0 during HSV-1 infection. We will highlight the gaps in the characterization of ICP0 function and propose future areas of research required to understand fully the biological properties of this important HSV-1 regulatory protein

    Constitutive TRIM22 expression in the respiratory airway confers a pre-existing defence against influenza A virus infection

    Get PDF
    The induction of antiviral effector proteins as part of a homeostatically controlled innate immune response to infection plays a critical role in limiting the propagation and transmission of respiratory pathogens. However, the prolonged induction of this immune response can lead to lung hyperinflammation, tissue damage, and respiratory failure. We hypothesized that tissues exposed to the constant threat of infection may constitutively express higher levels of antiviral effector proteins to reduce the need to activate potentially harmful innate immune defences. By analysing transcriptomic data derived from a range of human tissues, we identify lung tissue to express constitutively higher levels of antiviral effector genes relative to that of other mucosal and non-mucosal tissues. By using primary cell lines and the airways of rhesus macaques, we show the interferon-stimulated antiviral effector protein TRIM22 (TRIpartite Motif 22) to be constitutively expressed in the lung independently of viral infection or innate immune stimulation. These findings contrast with previous reports that have shown TRIM22 expression in laboratory-adapted cell lines to require interferon stimulation. We demonstrate that constitutive levels of TRIM22 are sufficient to inhibit the onset of human and avian influenza A virus (IAV) infection by restricting the onset of viral transcription independently of interferon-mediated innate immune defences. Thus, we identify TRIM22 to confer a pre-existing (intrinsic) intracellular defence against IAV infection in cells derived from the respiratory tract. Our data highlight the importance of tissue-specific and cell-type dependent patterns of pre-existing immune gene expression in the intracellular restriction of IAV from the outset of infection

    Constitutive TRIM22 expression within the respiratory tract identifies tissue-specific and cell-type dependent intrinsic immune barriers to influenza A virus infection

    Get PDF
    We hypothesized that increased expression of antiviral host factors at portals of viral entry may protect exposed tissues from the constant threat of invading pathogens. Comparative transcriptomic analysis identified the broad-acting restriction factor TRIM22 (TRIpartite Motif 22) to be among the most abundantly expressed antiviral host factors in the lung, a major portal of entry for many respiratory pathogens. This was surprising, as TRIM22 is currently considered to be an interferon stimulated gene (ISG) product that confers protection following the activation of pathogen-induced cytokine-mediated innate immune defences. Using human respiratory cell lines and the airways of rhesus macaques, we experimentally confirmed high levels of constitutive TRIM22 expression in the lung. In contrast, TRIM22 expression in many widely used transformed cell lines could only be observed following immune stimulation. Endogenous levels of TRIM22 in non-transformed cells were sufficient to restrict human and avian influenza A virus (IAV) infection by inhibiting the onset of viral transcription independently of cytokine-mediated innate immune defences. Thus, TRIM22 confers a pre-existing (intrinsic) tissue-specific immune barrier to IAV infection in the respiratory tract. We investigated whether the constitutive expression of TRIM22 was a characteristic shared by other ISGs in human lung tissue. Transcriptomic analysis identified a large group of ISGs and IAV immuno-regulatory host factors that were similarly enriched in the lung relative to other mucosal tissues, but whose expression was downregulated in transformed cell-lines. We identify common networks of immune gene downregulation which correlated with enhanced permissivity of transformed cells to initiate IAV replication. Our data highlight the importance of tissue-specific and cell-type dependent patterns of pre-existing immune gene expression in the intrinsic intracellular restriction of IAV; findings highly relevant to the immune regulation of many clinically important respiratory pathogens

    Comparative proteomics identifies Schlafen 5 (SLFN5) as a herpes simplex virus restriction factor that suppresses viral transcription

    Get PDF
    Intrinsic antiviral host factors confer cellular defence by limiting virus replication and are often counteracted by viral countermeasures. We reasoned that host factors that inhibit viral gene expression could be identified by determining proteins bound to viral DNA (vDNA) in the absence of key viral antagonists. Herpes simplex virus 1 (HSV-1) expresses E3 ubiquitin-protein ligase ICP0 (ICP0), which functions as an E3 ubiquitin ligase required to promote infection. Cellular substrates of ICP0 have been discovered as host barriers to infection but the mechanisms for inhibition of viral gene expression are not fully understood. To identify restriction factors antagonized by ICP0, we compared proteomes associated with vDNA during HSV-1 infection with wild-type virus and a mutant lacking functional ICP0 (ΔICP0). We identified the cellular protein Schlafen family member 5 (SLFN5) as an ICP0 target that binds vDNA during HSV-1 ΔICP0 infection. We demonstrated that ICP0 mediates ubiquitination of SLFN5, which leads to its proteasomal degradation. In the absence of ICP0, SLFN5 binds vDNA to repress HSV-1 transcription by limiting accessibility of RNA polymerase II to viral promoters. These results highlight how comparative proteomics of proteins associated with viral genomes can identify host restriction factors and reveal that viral countermeasures can overcome SLFN antiviral activity

    Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes

    Get PDF
    peer-reviewedBackground: About forty human diseases are caused by repeat instability mutations. A distinct subset of these diseases is the result of extreme expansions of polymorphic trinucleotide repeats; typically CAG repeats encoding poly-glutamine (poly-Q) tracts in proteins. Polymorphic repeat length variation is also apparent in human poly-Q encoding genes from normal individuals. As these coding sequence repeats are subject to selection in mammals, it has been suggested that normal variations in some of these typically highly conserved genes are implicated in morphological differences between species and phenotypic variations within species. At present, poly-Q encoding genes in non-human mammalian species are poorly documented, as are their functions and propensities for polymorphic variation. Results: The current investigation identified 178 bovine poly-Q encoding genes (Q ≄ 5) and within this group, 26 genes with orthologs in both human and mouse that did not contain poly-Q repeats. The bovine poly-Q encoding genes typically had ubiquitous expression patterns although there was bias towards expression in epithelia, brain and testes. They were also characterised by unusually large sizes. Analysis of gene ontology terms revealed that the encoded proteins were strongly enriched for functions associated with transcriptional regulation and many contributed to physical interaction networks in the nucleus where they presumably act cooperatively in transcriptional regulatory complexes. In addition, the coding sequence CAG repeats in some bovine genes impacted mRNA splicing thereby generating unusual transcriptional diversity, which in at least one instance was tissue-specific. The poly-Q encoding genes were prioritised using multiple criteria for their likelihood of being polymorphic and then the highest ranking group was experimentally tested for polymorphic variation within a cattle diversity panel. Extensive and meiotically stable variation was identified. Conclusions: Transcriptional diversity can potentially be generated in poly-Q encoding genes by the impact of CAG repeat tracts on mRNA alternative splicing. This effect, combined with the physical interactions of the encoded proteins in large transcriptional regulatory complexes suggests that polymorphic variations of proteins in these complexes have strong potential to affect phenotype.Dairy Australia (through the Innovative Dairy Cooperative Research Center

    The Intrinsic Antiviral Defense to Incoming HSV-1 Genomes Includes Specific DNA Repair Proteins and Is Counteracted by the Viral Protein ICP0

    Get PDF
    Cellular restriction factors responding to herpesvirus infection include the ND10 components PML, Sp100 and hDaxx. During the initial stages of HSV-1 infection, novel sub-nuclear structures containing these ND10 proteins form in association with incoming viral genomes. We report that several cellular DNA damage response proteins also relocate to sites associated with incoming viral genomes where they contribute to the cellular front line defense. We show that recruitment of DNA repair proteins to these sites is independent of ND10 components, and instead is coordinated by the cellular ubiquitin ligases RNF8 and RNF168. The viral protein ICP0 targets RNF8 and RNF168 for degradation, thereby preventing the deposition of repressive ubiquitin marks and counteracting this repair protein recruitment. This study highlights important parallels between recognition of cellular DNA damage and recognition of viral genomes, and adds RNF8 and RNF168 to the list of factors contributing to the intrinsic antiviral defense against herpesvirus infection

    Probabilistic Modeling for Semantic Scene Classification

    No full text
    Scene classification, the automatic categorization of images into semantic classes such as beach, field, or party, is useful in applications such as content-based image organization and context-sensitive digital enhancement. Most current scene-classification systems use low-level features and pattern recognition techniques; they achieve some success on limited domains. Several contemporary classifiers, including some developed in Rochester, incorporate semantic material and object detectors. Classification performance improves because because the gap between the features and the image semantics is narrowed. We propose that spatial relationships between the objects or materials can help by distinguishing between certain types of scenes and by mitigating the effects of detector failures. While past work on spatial modeling has used logic- or rule-based models, we propose a probabilistic framework to handle the loose spatial relationships that exist in many scene types. To this end, we have developed MASSES, an experimental testbed that can generate virtual scenes. MASSES can be used to experiment with different spatial models, different detector characteristics, and different learning parameters. Using a tree-structured Bayesian network for inference on a series of simulated natural scenes, we have shown that the presence of key spatial relationships are needed to disambiguate other types of scenes, achieving a gain of 7% in one case. However, our simple Bayes net is not expressive enough to model the faulty detection at the level of individual regions. As future work, we propose first to evaluate full (DAG) Bayesian networks and Markov Random Fields as potential probabilistic frameworks. We then plan to extend the chosen framework for our problem. Finally, we will compare our results on real and simulated sets of images with those obtained by other systems using spatial features represented implicitly
    • 

    corecore