61 research outputs found
Exercise on land or in water?
Alain Boussuges1, Olivier Gavarry21French Armed Forces Biomedical Research Institute, Brétigny sur Orge and UMR MD2, Aix-Marseilles University, Marseilles, France; 2Engineering Laboratory for Handicaps. South University of Toulon – Var, La Garde, FranceWe have read with interest the study published in the International Journal of General Medicine entitled “Hypotensive response after water-walking and land walking exercise sessions in healthy trained and untrained women” by Rodriguez et al.1 In this study, the authors investigated cardiovascular changes induced by walking in water in comparison with walking on land. Water exercises are commonly used in rehabilitation programs, particularly patients with mobility problems. Recently, some studies have suggested that exercise performed in water could improve cardiovascular function.2View original paper by Bocalini et al
Cardiovascular changes induced by cold water immersion during hyperbaric hyperoxic exposure.
The present study was designed to assess the cardiac changes induced by cold water immersion compared with dry conditions during a prolonged hyperbaric and hyperoxic exposure (ambient pressure between 1.6 and 3 ATA and PiO(2) between 1.2 and 2.8 ATA). Ten healthy volunteers were studied during a 6 h compression in a hyperbaric chamber with immersion up to the neck in cold water while wearing wet suits. Results were compared with measurements obtained in dry conditions. Echocardiography and Doppler examinations were performed after 15 min and 5 h. Stroke volume, left atrial and left ventricular (LV) diameters remained unchanged during immersion, whereas they significantly fell during the dry session. As an index of LV contractility, percentage fractional shortening remained unchanged, in contrast to a decrease during dry experiment. Heart rate (HR) significantly decreased after 5 h, although it had not changed during the dry session. The changes in the total arterial compliance were similar during the immersed and dry sessions, with a significant decrease after 5 h. In immersed and dry conditions, cardiac output was unchanged after 15 min but decreased by almost 20% after 5 h. This decrease was related to a decrease in HR during immersion and to a decrease in stroke volume in dry conditions. The hydrostatic pressure exerted by water immersion on the systemic vessels could explain these differences. Indeed, the redistribution of blood volume towards the compliant thoracic bed may conceal a part of hypovolaemia that developed in the course of the session
Diagnosis of hemidiaphragm paralysis: refine ultrasound criteria
BackgroundUltrasound has demonstrated its interest in the analysis of diaphragm function in patients with respiratory failure. The criteria used to diagnose hemidiaphragm paralysis are not well defined.MethodsThe aim of this observational retrospective study was to describe the ultrasound findings in 103 patients with diaphragm paralysis, previously diagnosed by conventional methods after various circumstances such as trauma or surgery. The ultrasound study included the recording of excursions of both diaphragmatic domes and the measurement of inspiratory thickening.ResultsOn paralyzed hemidiaphragm, thickening was less than 20% in all patients during deep inspiration. Thinning was recorded in 53% of cases. In some cases, the recording of the thickening could be difficult. The study of motion during voluntary sniffing reported a paradoxical excursion in all but one patient. During quiet breathing, an absence of movement or a paradoxical displacement was observed. During deep inspiration, a paradoxical motion at the beginning of inspiration followed by a reestablishment of movement in the cranio-caudal direction was seen in 82% of cases. In some patients, there was a lack of movement followed, after an average delay of 0.4 s, by a cranio-caudal excursion. Finally, in 4 patients no displacement was recorded. Evidence of hyperactivity (increased inspiratory thickening and excursion) of contralateral non-paralyzed hemidiaphragm was observed.ConclusionTo accurately detect hemidiaphragm paralysis, it would be interesting to combine the ultrasound study of diaphragm excursion and thickening. The different profiles reported by our study must be known to avoid misinterpretation
Hyperoxia Improves Hemodynamic Status During Head-up Tilt Testing in Healthy Volunteers A Randomized Study
International audienceHead-up tilt test is useful for exploring neurally mediated syncope. Adenosine is an ATP derivative implicated in cardiovascular disturbances that occur during head-up tilt test. The aim of the present study was to investigate the impact of hyperoxia on adenosine plasma level and on hemodynamic changes induced by head-up tilt testing. Seventeen healthy male volunteers (mean age 35 AE 11 years) were included in the study. The experiment consisted of 2 head-up tilt tests, 1 session with subjects breathing, through a mask, medical air (FiO 2 ÂĽ 21%) and 1 session with administration of pure oxygen (FiO 2 ÂĽ 100%) in double-blind manner. Investigations included continuous monitoring of hemodynamic data and measurement of plasma adenosine levels. No presyncope or syncope was found in 15 of the 17 volunteers. In these subjects, a slight decrease in systolic blood pressure was recorded during orthostatic stress performed under medical air exposure. In contrast, hyperoxia led to increased systolic blood pressure during orthostatic stress when compared with medical air. Furthermore, mean adenosine plasma levels decreased during hyperoxic exposure before (0.31 AE 0.08 mM) and during head-up tilt test (0.33 AE 0.09 mM) when compared with baseline (0.6 AE 0.1 mM). Adenosine plasma level was unchanged during medical air exposure at rest (0.6 AE 0.1 mM), and slightly decreased during orthostatic stress. In 2 volunteers, the head-up tilt test induced a loss of consciousness when breathing air. In these subjects, adenosine plasma level increased during orthostatic stress. In contrast, during hyperoxic exposure, the head-up tilt test did not induce presyncope or syncope. In these 2 volunteers, biological study demonstrated a decrease in adenosine plasma level at both baseline and during orthostatic stress for hyperoxic exposure compared with medical air. These results suggest that hyperoxia was able to increase blood pressure during head-up tilt test via a decrease in plasma adenosine concentration. Our results also suggest that adenosine receptor antagonists are worth trying in neurocardiogenic syncope. (Medicine 95(8):e2876) Abbreviations: AR = adenosine receptor, APL = adenosine plasma level, BP = blood pressure, DBP = diastolic blood pressure, FiO 2 = fraction of inspired oxygen, HR = heart rate, HUT = head-up tilt test, LMM = linear mixed model, PO 2 = partial pressure of oxygen, SBP = systolic blood pressure
A cross-sectional study assessing the contributions of body fat mass and fat-free mass to body mass index scores in male youth rugby players
Background. In some sports such as rugby, a large body size is an advantage, and the desire to gain weight can bring young players to become overweight or obese. The aim of this study was to evaluate the prevalence of overweight and obesity and the contribution of body fat mass index (BFMI) and fat-free mass index (FFMI) to body mass index (BMI) changes among young male rugby players (15-a-side rugby). Methods. The criteria of the International Obesity Task Force were used to define overweight and obesity from BMI. The method of skinfold thickness was used to assess percentage of body fat (%BF), BFMI, and FFMI. Excess body fat was defined by using BFMI and %BF above the 75th percentile. Data were grouped according to the age categories of the French Rugby Federation (U11, under 11 years; U13, under 13 years; U15, under 15 years) and to BMI status (NW normal-weight versus OW/OB overweight/obese). Results. Overall, 32.8% of the young players were overweight, and 13.8% were obese. However, 53% of young players classified as obese and overweight by BMI had an excess body fat by using BFMI above the 75th percentile. FFMI increased significantly between U11 and U13 in both groups, without significant change in BMI and BFMI. Both groups had similar significant gains in BMI and FFMI between U13 and U15, while BFMI only increased significantly in OW/OB (+ 18.5%). The strong correlations between BMI and %BF were systematically lower than those between BMI and BFMI. FFMI was strongly or moderately associated with BFMI. Conclusions. Chart analysis of BFMI and FFMI could be used to distinguish changes in body composition across age categories in young male rugby players classified as normal-weight, overweight, and obese by BMI
Recommended from our members
Pathophysiological and diagnostic implications of cardiac biomarkers and antidiuretic hormone release in distinguishing immersion pulmonary edema from decompression sickness
Immersion pulmonary edema (IPE) is a misdiagnosed environmental illness caused by water immersion, cold, and exertion. IPE occurs typically during SCUBA diving, snorkeling, and swimming. IPE is sometimes associated with myocardial injury and/or loss of consciousness in water, which may be fatal. IPE is thought to involve hemodynamic and cardiovascular disturbances, but its pathophysiology remains largely unclear, which makes IPE prevention difficult. This observational study aimed to document IPE pathogenesis and improve diagnostic reliability, including distinguishing in some conditions IPE from decompression sickness (DCS), another diving-related disorder.
Thirty-one patients (19 IPE, 12 DCS) treated at the Hyperbaric Medicine Department (Ste-Anne hospital, Toulon, France; July 2013–June 2014) were recruited into the study. Ten healthy divers were recruited as controls. We tested: (i) copeptin, a surrogate marker for antidiuretic hormone and a stress marker; (ii) ischemia-modified albumin, an ischemia/hypoxia marker; (iii) brain-natriuretic peptide (BNP), a marker of heart failure, and (iv) ultrasensitive-cardiac troponin-I (cTnI), a marker of myocardial ischemia.
We found that copeptin and cardiac biomarkers were higher in IPE versus DCS and controls: (i) copeptin: 68% of IPE patients had a high level versus 25% of DCS patients (P < 0.05) (mean ± standard-deviation: IPE: 53 ± 61 pmol/L; DCS: 15 ± 17; controls: 6 ± 3; IPE versus DCS or controls: P < 0.05); (ii) ischemia-modified albumin: 68% of IPE patients had a high level versus 16% of DCS patients (P < 0.05) (IPE: 123 ± 25 arbitrary-units; DCS: 84 ± 25; controls: 94 ± 7; IPE versus DCS or controls: P < 0.05); (iii) BNP: 53% of IPE patients had a high level, DCS patients having normal values (P < 0.05) (IPE: 383 ± 394 ng/L; DCS: 37 ± 28; controls: 19 ± 15; IPE versus DCS or controls: P < 0.01); (iv) cTnI: 63% of IPE patients had a high level, DCS patients having normal values (P < 0.05) (IPE: 0.66 ± 1.50 μg/L; DCS: 0.0061 ± 0.0040; controls: 0.0090 ± 0.01; IPE versus DCS or controls: P < 0.01). The combined “BNP-cTnI” levels provided most discrimination: all IPE patients, but none of the DCS patients, had elevated levels of either/both of these markers.
We propose that antidiuretic hormone acts together with a myocardial ischemic process to promote IPE. Thus, monitoring of antidiuretic hormone and cardiac biomarkers can help to make a quick and reliable diagnosis of IPE
Etude non invasive de la compliance artérielle en conditions extrèmes
AIX-MARSEILLE2-BU MĂ©d/Odontol. (130552103) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF
Effets de l'hyperoxie sur la circulation artérielle périphérique du volontaire sain et du patient en choc septique
AIX-MARSEILLE2-BU MĂ©d/Odontol. (130552103) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF
- …