2 research outputs found

    Development of a Field Laboratory for Monitoring of Fecal-Sludge Treatment Plants

    No full text
    In urban humanitarian-aid operations, safe treatment of fecal sludge is highly important. While currently field-deployable fecal-sludge treatment plants are being developed, field-ready analytical equipment for process-control and public health monitoring is missing. Within the Microbial Sludge Quality project, a field laboratory was developed. A minimum set of parameters for the considered processes was developed through literature research. The analytical methods were tested on their field applicability and, if necessary, modified. The following methods were modified for field use: bacteriological analysis (sample homogenization and counting), chemical oxygen demand (sample digestion), volatile fatty acid–alkalinity titration (redesigned test setup), total solids (redesigned test setup), and ammonia determination (redesigned test setup). For bacteriological analysis, chemical oxygen demand, and total solids the modifications lead to highly comparable analytical results. The results obtained by the field methodology for volatile fatty acid–alkalinity titration and ammonia determination were sufficient for field-process monitoring; however, they did not correlate as well. To enable rapid startup of the laboratory during humanitarian-aid missions, it was developed to include analytical and support equipment. The usage of the developed laboratory should allow close-in-time process monitoring and public-health assessments of fecal-sludge treatment plants

    The ManureEcoMine pilot installation : advanced integration of technologies for the management of organics and nutrients in livestock waste

    No full text
    Manure represents an exquisite mining opportunity for nutrient recovery (nitrogen and phosphorus), and for their reuse as renewable fertilisers. The ManureEcoMine proposes an integrated approach of technologies, operated in a pilot- scale installation treating swine manure (83.7%) and Ecofrit (R) (16.3%), a mix of vegetable residues. Thermophilic anaerobic digestion was performed for 150 days, the final organic loading rate was 4.6 kgCOD m(-3) d(-1), with a biogas production rate of 1.4 Nm(3) m(-3) d(-1). The digester was coupled to an ammonia side- stream stripping column and a scrubbing unit for free ammonia inhibition reduction in the digester, and nitrogen recovery as ammonium sulphate. The stripped digestate was recirculated daily in the digester for 15 days (68% of the digester volume), increasing the gas production rate by 27%. Following a decanter centrifuge, the digestate liquid fraction was treated with an ultrafiltration membrane. The filtrate was fed into a struvite reactor, with a phosphorus recovery efficiency of 83% (as orthophosphate). Acidification of digestate could increment the soluble orthophosphate concentration up to four times, enhancing phosphorus enrichment in the liquid fraction and its recovery via struvite. A synergistic combination of manure processing steps was demonstrated to be technologically feasible to upgrade livestock waste into refined, concentrated fertilisers
    corecore