557 research outputs found

    The role of stoichiometric vacancy periodicity in pressure-induced amorphization of the Ga2SeTe2 semiconductor alloy

    Full text link
    We observe that pressure-induced amorphization of Ga2SeTe2 (a III-VI semiconductor) is directly influenced by the periodicity of its intrinsic defect structures. Specimens with periodic and semi-periodic two-dimensional vacancy structures become amorphous around 10-11 GPa in contrast to those with aperiodic structures, which amorphize around 7-8 GPa. The result is a notable instance of altering material phase-change properties via rearrangement of stoichiometric vacancies as opposed to adjusting their concentrations. Based on our experimental findings, we posit that periodic two-dimensional vacancy structures in Ga2SeTe2 provide an energetically preferred crystal lattice that is less prone to collapse under applied pressure. This is corroborated through first-principles electronic structure calculations, which demonstrate that the energy stability of III-VI structures under hydrostatic pressure is highly dependent on the configuration of intrinsic vacancies

    Universal magnetic and structural behaviors in the iron arsenides

    Full text link
    Commonalities among the order parameters of the ubiquitous antiferromagnetism present in the parent compounds of the iron arsenide high temperature superconductors are explored. Additionally, comparison is made between the well established two-dimensional Heisenberg-Ising magnet, K2_2NiF4_4 and iron arsenide systems residing at a critical point whose structural and magnetic phase transitions coincide. In particular, analysis is presented regarding two distinct classes of phase transition behavior reflected in the development of antiferromagnetic and structural order in the three main classes of iron arsenide superconductors. Two distinct universality classes are mirrored in their magnetic phase transitions which empirically are determined by the proximity of the coupled structural and magnetic phase transitions in these materials.Comment: 6 pages, 4 figure

    Linear systems with adiabatic fluctuations

    Full text link
    We consider a dynamical system subjected to weak but adiabatically slow fluctuations of external origin. Based on the ``adiabatic following'' approximation we carry out an expansion in \alpha/|\mu|, where \alpha is the strength of fluctuations and 1/|\mu| refers to the time scale of evolution of the unperturbed system to obtain a linear differential equation for the average solution. The theory is applied to the problems of a damped harmonic oscillator and diffusion in a turbulent fluid. The result is the realization of `renormalized' diffusion constant or damping constant for the respective problems. The applicability of the method has been critically analyzed.Comment: Plain Latex, no figure, 21 page

    Acetylation at Lys-92 enhances signaling by the chemotaxis response regulator protein CheY

    Get PDF
    When Escherichia coli cells lacking all chemotaxis proteins except the response regulator CheY are exposed to acetate, clockwise flagellar rotation results, indicating the acetate stimulus has activated signaling by CheY. Acetate can be converted to acetyl-CoA by either of two different metabolic pathways, which proceed through acetyl phosphate or acetyl-AMP intermediates. In turn, CheY can be covalently modified by either intermediate in vitro, leading to phosphorylation or acetylation, respectively. Either pathway is sufficient to support the CheY-mediated response to acetate in vivo. Whereas phosphorylation of Asp-57 is a recognized mechanism for activation of CheY to stimulate clockwise flagellar rotation, acetylation of CheY is less well characterized. We found evidence for multiple CheY acetylation sites by mass spectrometry and directly identified Lys-92 and Lys-109 as acetylation sites by Edman degradation of peptides from [14C]acetate-labeled CheY. Replacement of CheY Lys-92, the preferred acetylation site, with Arg has little effect on chemotaxis but completely prevents the response to acetate via the acetyl-AMP pathway. Thus acetylation of Lys-92 activates clockwise signaling by CheY in vivo. The mechanism by which acetylation activates CheY apparently is not simple charge neutralization, nor does it involve enhanced binding to the FliM flagellar switch protein. Thus acetylation probably affects signal generation by CheY at a step after switch binding

    Gradient and Amplitude Scattering in Surface-Corrugated Waveguides

    Full text link
    We investigate the interplay between amplitude and square-gradient scattering from the rough surfaces in multi-mode waveguides (conducting quantum wires). The main result is that for any (even small in height) roughness the square-gradient terms in the expression for the wave scattering length (electron mean free path) are dominant, provided the correlation length of the surface disorder is small enough. This important effect is missed in existing studies of the surface scattering.Comment: 4 pages, one figur

    Manifestation of the Roughness-Square-Gradient Scattering in Surface-Corrugated Waveguides

    Full text link
    We study a new mechanism of wave/electron scattering in multi-mode surface-corrugated waveguides/wires. This mechanism is due to specific square-gradient terms in an effective Hamiltonian describing the surface scattering, that were neglected in all previous studies. With a careful analysis of the role of roughness slopes in a surface profile, we show that these terms strongly contribute to the expression for the inverse attenuation length (mean free path), provided the correlation length of corrugations is relatively small. The analytical results are illustrated by numerical data.Comment: 13 pages, 3 figure

    Antiferromagnetic Critical Fluctuations in BaFe2_2As2_2

    Full text link
    Magnetic correlations near the magneto-structural phase transition in the bilayer iron pnictide parent compound, BaFe2_2As2_2, are measured. In close proximity to the antiferromagnetic phase transition in BaFe2_2As2_2, a crossover to three dimensional critical behavior is anticipated and has been preliminarily observed. Here we report complementary measurements of two-dimensional magnetic fluctuations over a broad temperature range about TN_N. The potential role of two-dimensional critical fluctuations in the magnetic phase behavior of BaFe2_2As2_2 and their evolution near the anticipated crossover to three dimensional critical behavior and long-range order are discussed.Comment: 6 pages, 4 figures; Accepted for publication in Physical Review

    Heat capacity study of BaFe2_{2}As2_{2}: effects of annealing

    Full text link
    Heat-capacity, X-ray diffraction, and resistivity measurements on a high-quality BaFe2_{2}As2_{2} sample show an evolution of the magneto-structural transition with successive annealing periods. After a 30-day anneal the resistivity in the (ab) plane decreases by more than an order of magnitude, to 12 μΩ\mu\Omegacm, with a residual resistance ratio \sim36; the heat-capacity anomaly at the transition sharpens, to an overall width of less than K, and shifts from 135.4 to 140.2 K. The heat-capacity anomaly in both the as-grown sample and after the 30-day anneal shows a hysteresis of \sim0.15 K, and is unchanged in a magnetic field μ0\mu_{0}H = 14 T. The X-ray and heat-capacity data combined suggest that there is a first order jump in the structural order parameter. The entropy of the transition is reported

    The nature of the magnetic and structural phase transitions in BaFe2_{2}As2_{2}

    Full text link
    We present the results of an investigation of both the magnetic and structural phase transitions in a high quality single crystalline sample of the undoped, iron pnictide compound BaFe2_2As2_2. Both phase transitions are characterized via neutron diffraction measurements which reveal simultaneous, continuous magnetic and structural orderings with no evidence of hysteresis, consistent with a single second order phase transition. The onset of long-range antiferromagnetic order can be described by a simple power law dependence ϕ(T)2(1TTN)2β\phi(T)^2\propto(1-\frac{T}{T_N})^{2\beta} with β=0.103±0.018\beta=0.103\pm0.018; a value near the β=0.125\beta=0.125 expected for a two-dimensional Ising system. Biquadratic coupling between the structural and magnetic order parameters is also inferred along with evidence of three-dimensional critical scattering in this system.Comment: New figure and discussion added. Length: 11 pages, 7 figure

    Adaptive response and enlargement of dynamic range

    Full text link
    Many membrane channels and receptors exhibit adaptive, or desensitized, response to a strong sustained input stimulus, often supported by protein activity-dependent inactivation. Adaptive response is thought to be related to various cellular functions such as homeostasis and enlargement of dynamic range by background compensation. Here we study the quantitative relation between adaptive response and background compensation within a modeling framework. We show that any particular type of adaptive response is neither sufficient nor necessary for adaptive enlargement of dynamic range. In particular a precise adaptive response, where system activity is maintained at a constant level at steady state, does not ensure a large dynamic range neither in input signal nor in system output. A general mechanism for input dynamic range enlargement can come about from the activity-dependent modulation of protein responsiveness by multiple biochemical modification, regardless of the type of adaptive response it induces. Therefore hierarchical biochemical processes such as methylation and phosphorylation are natural candidates to induce this property in signaling systems.Comment: Corrected typos, minor text revision
    corecore