74 research outputs found

    Block of voltage-gated calcium channels by peptide toxins

    Get PDF
    International audienceVenoms from various predatory species, such as fish hunting molluscs scorpions, snakes and arachnids contain a large spectrum of toxins that include blockers of voltage-gated calcium channels. These peptide blockers act by two principal manners-physical occlusion of the pore and prevention of activation gating. Many of the calcium channel-blocking peptides have evolved to tightly occupy their binding pocket on the principal pore forming subunit of the channel, often rendering block poorly reversible. Moreover, several of the best characterized blocking peptides have developed a high degree of channel subtype selectivity. Here we give an overview of different types of calcium channel-blocking toxins, their mechanism of action, channel subtype specificity, and potential use as therapeutic agents

    Regulation by protein kinase-C of putative P-type Ca channels expressed in Xenopus oocytes from cerebellar mRNA

    Get PDF
    AbstractXenopus oocytes injected with rat cerebellar mRNA expressed functional voltage-dependent Ca channels detected as an inward Ba current (IBa). The pharmacological resistance to dihydropyridines and ω-conotoxin together with the blockade obtained with Agelenopsis aperta venom suggest that these channels could be somehow assimilated to P-type Ca channels. The precise nature of the transplanted Ca channels was assessed by hybrid-arrest experiments using a specific oligonucleotide antisense-derivated from the recently cloned α1-subunit of P channels (BI-1 clone). In addition, we demonstrate that exogenous Ca channel activity was enhanced by two different PKC activators (a phorbol ester and a structural analog to diacylglycerol). The general electrophysiological and pharmacological properties of the stimulated Ca channels remain unchanged. This potentiation induced by PKC activators is antagonized by a PKC inhibitor (staurosporine) and by a monoclonal antibody directed against PKC. It is concluded that P-type Ca channels are potentially regulated by PKC phosphorylation and the functional relevance of this intracellular pathway is discussed

    The Low-Threshold Calcium Channel Cav3.2 Mediates Burst Firing of Mature Dentate Granule Cells

    Get PDF
    International audienceMature granule cells are poorly excitable neurons that were recently shown to fire action potentials, preferentially in bursts. It is believed that the particularly pronounced short-term facilitation of mossy fiber synapses makes granule cell bursting a very effective means of properly transferring information to CA3. However, the mechanism underlying the unique bursting behavior of mature granule cells is currently unknown. Here, we show that Cav3.2 T-type channels at the axon initial segment are responsible for burst firing of mature granule cells in rats and mice. Accordingly, Cav3.2 knockout mice fire tonic spikes and exhibit impaired bursting, synaptic plasticity and dentate-to-CA3 communication. The data show that Cav3.2 channels are strong modulators of bursting and can be considered a critical molecular switch that enables effective information transfer from mature granule cells to the CA3 pyramids

    TRPV1 promotes opioid analgesia during inflammation

    Get PDF
    International audienc

    The NALCN ion channel is activated by M3 muscarinic receptors in a pancreatic β-cell line

    Get PDF
    A previously uncharacterized putative ion channel, NALCN (sodium leak channel, non-selective), has been recently shown to be responsible for the tetrodotoxin (TTX)-resistant sodium leak current implicated in the regulation of neuronal excitability. Here, we show that NALCN encodes a current that is activated by M3 muscarinic receptors (M3R) in a pancreatic β-cell line. This current is primarily permeant to sodium ions, independent of intracellular calcium stores and G proteins but dependent on Src activation, and resistant to TTX. The current is recapitulated by co-expression of NALCN and M3R in human embryonic kidney-293 cells and in Xenopus oocytes. We also show that NALCN and M3R belong to the same protein complex, involving the intracellular I–II loop of NALCN and the intracellular i3 loop of M3R. Taken together, our data show the molecular basis of a muscarinic-activated inward sodium current that is independent of G-protein activation, and provide new insights into the properties of NALCN channels

    Voltage gated calcium channels as targets for analgesics

    No full text
    Management of pain is an essential aspect of medicine; however, current therapies are frequently insufficient owing to severe side effects or limited effectiveness. Therefore, the discovery of new analgesics is needed, especially to treat the proportion of painful patients poorly improved by available analgesics. The transmission of nociceptive stimuli in primary afferent neurons critically depends on a peculiar repertoire of various types of ion channels such as a number of TRP channels, persistent sodium channels, inwardly rectifying potassium channels and voltage-gated calcium channels that either detect noxious stimuli, or regulate cellular excitability and synaptic transmission. Moreover, some of these channels are redistributed and upregulated in pathological states leading to abnormal detection or transmission of harmful stimuli, and consequently lead to states of chronic pain. Hence, these channels are considered key targets for the development of analgesics. The nervous system expresses multiple types of calcium channels with specialized roles in neurophysiology. Here, we review the role of these channels and their accessory subunits in nociceptive signaling, and their potential as targets for development of innovative analgesics

    Distributions et fonctions du canal Calcique Cav3.2 dans les voies somatosensorielles

    No full text
    Le traitement et la gestion de la douleur sont depuis toujours une priorité pour le corps médical. Malgré leur importance pour la qualité de vie, les analgésiques couramment utilisés possèdent un ratio bénéfice/risque faible. La recherche de nouveaux concepts thérapeutiques pour lutter contre la douleur est donc une priorité. Afin de répondre à ce besoin, il faut d'abord comprendre les mécanismes de la perception de la douleur ainsi que, plus globalement, ceux permettant de percevoir son environnement. Dans ce contexte, de nombreuses études ont mis en évidence l'implication du canal calcique à bas seuil Cav3.2 dans les voies de la transmission de l'information douloureuse. Il représente donc une cible de choix pour le traitement de la douleur mais l'identité des neurones exprimant ces canaux ainsi que la fonction de Cav3.2 dans la physiologie des neurones sensoriels étaient jusqu'à présent inconnues. Au cours de cette thèse nous avons dans un premier temps décrit un nouvel inhibiteur des canaux calciques à bas seuil : le TTA-A2. Nous avons ainsi démontré que le TTA-A2 est un inhibiteur spécifique des canaux Cav3.1, Cav3.2, et Cav3.3. Il permet de diminuer l'excitabilité des neurones sensoriels exprimant Cav3.2, ce qui provoque une analgésie sur des animaux sains et pathologiques. Dans un deuxième temps nous nous sommes servis de ce nouvel outil en parallèle d'un nouveau modèle murin possédant une étiquette fluorescente (Knock in GFP) sur le canal Cav3.2 pour explorer la localisation et la fonction de Cav3.2 dans les neurones sensoriels. Nous avons ainsi découvert que Cav3.2 est exprimé dans des mécanorécepteurs à bas seuil impliqués dans la perception des stimuli mécaniques et thermiques nocifs ou non-nocifs. Le canal en lui-même se trouve aux endroits clés de la genèse et de la propagation du message nerveux périphérique, et module le seuil et la vitesse de conduction des potentiels d'action. Replacé dans le contexte de la bibliographie, l'ensemble de nos résultats montre que Cav3.2 permet de donner la modalité à bas seuil aux neurones l'exprimant.Pain management and treatment have always been a priority for life quality. Despite this fact, analgesics commonly used present a bad benefice/risk ratio. Discovery of new therapeutic concepts to fight pain is highly required. To complete this task, we first need to better understand pain perception mechanisms, and more globally, mechanisms involved in the perception of our environment. In this context, numerous studies have shown that low threshold calcium channels Cav3.2 are involved in pain information transmission. Thus, it represents a good target for the treatment of pain. However, neuronal identity of Cav3.2-expressing sensory neurons and Cav3.2 functions in neuronal physiology are unknown. During this PhD we first described a new low voltage activated channel antagonist named TTA-A2. We demonstrated that TTA-A2 is a powerful nanomolar specific agonist of Cav3.1, Cav3.2 and Cav3.3. This molecule is able to reduce excitability in sensory neurons expressing Cav3.2, and is able to generate a strong analgesic effect on naive and pathologic animals. In the other part of this PhD, we used this new tool combined to a new transgenic mouse that expressed Cav3.2 tagged with a fluorescent protein (Knock-in GFP). With these new tools we discovered that Cav3.2 is expressed in low threshold mechanoreceptors involved in detection of painful and non painful mechanical and thermal stimuli. Cav3.2 itself is expressed at key localisations that allow action potential generation and propagation, and modulate threshold and speed conduction of action potential. Taken together, these results show that Cav3.2 gives the low threshold modality to neurons.MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    Implication des canaux calciques de type T dans la douleur viscérale et recherche de ligands

    No full text
    La prise en charge thérapeutique du syndrome de l'intestin irritable (SII), caractérisé par des douleurs abdominales est empirique et manque d'efficacité. Dans ce travail de thèse, nous avons mis en évidence, à l'aide d'un modèle préclinique du SII chez le rat, le rôle des canaux calciques de type T, codés par une sous-unité Cav3.2, dans la douleur viscérale. Nous avons montré dans ce type d'hypersensibilité colique, non inflammatoire, induit par des instillations colique de butyrate, que les corps cellulaires des neurones viscéraux nociceptifs (marqage rétrograde au DiI) présentent une augmentation de l'amplitude des courants calciques générés par la sous-unité Cav3.2 lors de l'enregistrement électrophysiologique in vitre. Cette hypersensibilité colique peut être réprimée par injection intrathécale d'oligonucléotides antisens ciblant la sous-cavité Cav3.2. Nous montrons in vitro que l'action du butyrate semble augmenter le trafic du canal à la membrane, l'application du bréfeldine A bloque l'effet de celui-ci alors qu'une action au niveau de la syntèse protéique par l'anisomycine n'a aucun effet. Ce canal joue donc un rôle actif dans la physiopathologie de la douleur confortant son statut de cible d'intérêt pour la découverte d'analgésiques innovants. C'est dans cette optique que nous avons aussi entrepris la recherche d'un ligand sélectif de la sous-unité Cav3.2, par le criblage d'une banque de venin de mygales. L'association de différentes tecniques de purification (HPLC), de spectrométrie et de séquençage nous a permis de mettre en évidence un peptide prometteur bloquant l'activité de Cav3.2. La séquence de ce peptide a fait l'objet d'un dépot de brevetMONTPELLIER-BU Médecine UPM (341722108) / SudocMONTPELLIER-BU Médecine (341722104) / SudocSudocFranceF

    Etude de l'interaction canaux calciques de type-N / récepteurs couplés aux protéines G et de son impact dans la tolérance aux effets analgésiques de la morphine.

    No full text
    Bien que la régulation des canaux calciques par les récepteurs couplés aux protéines G soit connue depuis une trentaine d'année, ce n'est que récemment qu'il a été découvert que ce phénomène pouvait passer par une interaction directe entre ces deux partenaires. Les RCPGs sont les senseurs d'un grand nombre de paramètres (des simples photons aux molécules odorantes en passant par des hormones, acides aminés et nucléotides) et ils contrôlent un grand nombre de processus cellulaires en fonction de ces différents stimuli, ce qui en fait une cible thérapeutique majeure. Une de leurs cibles est l'activité des canaux calciques voltage dépendants qui est responsable d'un grand nombre de processus tels que le contrôle du potentiel de membrane, le relargage de neurotransmetteurs, la contraction musculaire ou, bien sûr, le contrôle du taux de calcium intracellulaire qui est lui-même un second messager impliqué dans de nombreuses voies de régulations.Il nous a donc paru intéressant de se pencher plus en avant sur ces interactions et de trouver une méthode nous permettant de cribler ces interactions potentielles avec des RCPG ciblés pouvant intervenir dans une thématique de contrôle de la douleur. Pour cela nous avons développé une stratégie de FRET en temps résolu utilisant les cryptates de terres rares à déactivation lente couplés aux ligands du tag SNAP comme donneurs de fluorescence, les canaux calciques étudiées étant fusionnés avec cet épitope et l'eGFP fusionnée aux RCPGs en tant qu'accepteur. Ce test nous a permis de confirmer l'interaction entre CaV2.2 et ORL1 le récepteur de la nociceptine. Nous avons ensuite cherché à caractériser plus précisément cette interaction et nous avons déterminé quelles en étaient les séquences peptidiques responsables au sein des domaines C-terminaux de ces deux protéines grâce à des expériences de GST-pull down. Nous avons synthétisé un peptide reproduisant la séquence d'interaction d'ORL1 que nous avons couplé à la séquence TAT, le rendant ainsi capable de pénétrer les membranes cellulaires. Lorsque nous ajoutons ce peptide leurre dans les expériences de TR-FRET, l'augmentation de fluorescence observée en présence de CaV2.2-SNAP et ORL1-GFP disparait totalement alors que l'ajout d'un peptide contrôle composé des mêmes acides aminés mais présentés dans le désordre n'a aucun effet. Nous avons ensuite cherché à étudier les effets de ce peptide in vivo lors d'un protocole de tolérance à la morphine étant donné que les souris K.O. pour le gène d'ORL1 sont résistantes à l'apparition de cette tolérance. Cette stratégie de découplage CaV2.2 :: ORL1 abolit complètement le phénomène de tolérance aux effets analgésiques de la morphine par une action au niveau spinal. Ce travail peut conduire à l'utilisation d'une telle approche dans une perspective thérapeutique visant à améliorer l'utilisation de morphiniques lors du traitement des douleurs chroniques.The regulation of the calcium channels by GPCRs has been known for almost thirty years but the direction interaction between those two proteins is a recent breakthrough. GPCRs are sensors for a great number of parameters (photons, smell molecules, hormones, amino acids, nucleotides ) and they control numerous cellular functions according to those parameters making them a major target for pharmacology. One of the GPCR's targets is the calcium channel activity which is responsible for a great number of cellular processes like control of the membrane potential, neurotransmitters or hormonal secretion, muscular contraction and, of course, control of the intracellular calcium level which is a second messenger of numerous cell-regulation pathways.It appears to us that it would be interesting to study more closely those interactions and find a way to screen the GPCR/calcium channels interactions that may occur in pain regulation. We developed a strategy of time resolved FRET, using rare earth cryptate coupled to the ligand of the SNAP tag which is fused to the calcium channel as fluorescence donor and eGFP fused GRPRs as acceptors. That test confirmed the interaction between CaV2.2 and ORL1, the nociceptin receptor. We characterized more precisely the peptide sequence of the carboxy-terminal domain of the two proteins which is responsible for the interaction using GST-pull down experiments. We synthesized a peptide reproducing the ORL1 interaction sequence coupled to the TAT sequence allowing to go through the cell membranes. When we add this decoy peptide to ours TR-FRET experiments we lose all the increase of fluorescence that we see in presence of CaV2.2-SNAP and ORL1-GFP but the adding of a control peptide made of the same peptides but scrambled didn't affect the experiment. Then we look for the effects of this peptide in vivo, during a morphine tolerance protocol as it was reported that the ORL1 knock-out mice were insensitive to this phenomenon. This strategy of uncoupling CaV2.2 and ORL1 leads to a complete suppression of the tolerance to the analgesic effects of the morphine by an action at the spinal level. This work could lead to a therapeutic use of this approach which could enhance the use of morphinic compounds in treatment of chronics pains.MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF
    • …
    corecore