11 research outputs found

    Effects of thiol reagents on Streptomyces K15 DD-peptidase-catalysed reactions.

    No full text
    The 26,000-Mr DD-peptidase of Streptomyces K15 binds one equivalent of thiol reagents as 5,5'-dithiobis-(2-nitrobenzoate) or p-chloromercuribenzoate (pCMB). Derivatization of the DD-peptidase by pCMB decreases the efficacy of the initial binding of the ester carbonyl donor Ac2-L-Lys-D-Ala-D-lactate to the enzyme (K), the rate of enzyme acylation by the donor (K+2) and the rate of enzyme deacylation (k+3). However, the value of the k+2/k+3 ratio, and therefore the percentage of total enzyme which, at saturating concentrations of the donor, is present as acyl-enzyme at the steady state of the reaction, are not modified. The enzyme's binding sites for pCMB and benzylpenicillin are not mutually exclusive. But, when compared with the native enzyme, the pCMB-derivatized enzyme undergoes acylation by benzylpenicillin with a decreased second-order-rate constant (k+2/K) value and gives rise to a penicilloyl adduct of increased stability. Since the acyl-enzyme mechanism is not annihilated by pCMB derivatization, it is proposed that basically, and like all the other DD-peptidases/penicillin-binding proteins so far characterized, the Streptomyces K15 DD-peptidase is an active-site-serine enzyme

    Diversity of the Mechanisms of Resistance to Beta-Lactam Antibiotics

    Full text link
    The sensitivity of a bacterium to beta-lactam antibiotics depends upon the interplay between 3 independent factors: the sensitivity of the essential penicillin-binding enzyme(s), the quantity and properties of the beta-lactamase(s) and the diffusion barrier that the outer-membrane of Gram-negative bacteria can represent. Those three factors can be modified by mutations or by the horizontal transfer of genes or portions of genes

    Point mutations of two arginine residues in the Streptomyces R61 DD-peptidase.

    No full text
    Incubation of the exocellular DD-carboxypeptidase/transpeptidase of Streptomyces R61 with phenylglyoxal resulted in a time-dependent decrease in the enzyme activity. This inactivation was demonstrated to be due to modification of the Arg-99 side chain. In consequence, the role of that residue was investigated by site-directed mutagenesis. Mutation of Arg-99 into leucine appeared to be highly detrimental to enzyme stability, reflecting a determining structural role for this residue. The conserved Arg-103 residue was also substituted by using site-directed mutagenesis. The modification to a serine residue yielded a stable enzyme, the catalytic properties of which were similar to those of the wild-type enzyme. Thus Arg-103, although strictly conserved or replaced by a lysine residue in most of the active-site penicillin-recognizing proteins, did not appear to fulfil any essential role in either the enzyme activity or structure

    X-MyT1, a Xenopus C2HC-type zinc finger protein with a regulatory function in neuronal differentiation.

    No full text
    X-MyT1 is a C2HC-type zinc finger protein that we find to be involved in the primary selection of neuronal precursor cells in Xenopus. Expression of this gene is positively regulated by the bHLH protein X-NGNR-1 and negatively regulated by the Notch/Delta signal transduction pathway. X-MyT1 is able to promote ectopic neuronal differentiation and to confer insensitivity to lateral inhibition, but only in cooperation with bHLH transcription factors. Inhibition of X-MyT1 function inhibits normal neurogenesis as well as ectopic neurogenesis caused by overexpression of X-NGNR-1. On the basis of these findings, we suggest that X-MyT1 is a novel, essential element in the cascade of events that allows cells to escape lateral inhibition and to enter the pathway that leads to terminal neuronal differentiation.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Importance of the two tryptophan residues in the Streptomyces R61 exocellular DD-peptidase.

    No full text
    Modification of the Streptomyces R61 DD-peptidase by N-bromosuccinimide resulted in a rapid loss of enzyme activity. In consequence, the role of the enzyme's two tryptophan residues was investigated by site-directed mutagenesis. Trp271 was replaced by Leu. The modification yielded a stable enzyme whose structural and catalytic properties were similar to those of the wild-type protein. Thus the Trp271 residue, though almost invariant among the beta-lactamases of classes A and C and the low-Mr penicillin-binding proteins, did not appear to be essential for enzyme activity. Mutations of the Trp233 into Leu and Ser strongly decreased the enzymic activity, the affinity for beta-lactams and the protein stability. Surprisingly, the benzylpenicilloyl-(W233L)enzyme deacylated at least 300-fold more quickly than the corresponding acyl-enzyme formed with the wild-type protein and gave rise to benzylpenicilloate instead of phenylacetylglycine. This mutant DD-peptidase thus behaved as a weak beta-lactamase

    Emergence of the ZNF91 Krüppel-associated box-containing zinc finger gene family in the last common ancestor of anthropoidea.

    No full text
    The ZNF91 gene family, a subset of the Krüppel-associated box (KRAB)-containing group of zinc finger genes, comprises more than 40 loci; most reside on human chromosome 19p12-p13.1. We have examined the emergence and evolutionary conservation of the ZNF91 family. ZNF91 family members were detected in all species of great apes, gibbons, Old World monkeys, and New World monkeys examined but were not found in prosimians or rodents. In each species containing the ZNF91 family, the genes were clustered at one major site, on the chromosome(s) syntenic to human chromosome 19. To identify a putative "founder" gene, > 20 murine KRAB-containing zinc finger protein (ZFP) cDNAs were randomly cloned, but none showed sequence similarity to the ZNF91 genes. These observations suggest that the ZNF91 gene cluster is a derived character specific to Anthropoidea, resulting from a duplication and amplification event some 55 million years ago in the common ancestor of simians. Although the ZNF91 gene cluster is present in all simian species, the sequences of the human ZNF91 gene that confer DNA-binding specificity were conserved only in great apes, suggesting that there is not a high selective pressure to maintain the DNA targets of these proteins during evolution

    Emergence of the ZNF91 Kruppel-associated box-containing zinc finger gene family in the last common ancestor of anthropoidea

    Full text link
    peer reviewedThe ZNF91 gene family, a subset of the Kruppel-associated box (KRAB)-containing group of zinc finger genes, comprises more than 40 loci; most reside on human chromosome 19p12-p13.1. We have examined the emergence and evolutionary conservation of the ZNF91 family. ZNF91 family members were detected in all species of great apes, gibbons, Old World monkeys, and New World monkeys examined but were not found in prosimians or rodents. In each species containing the ZNF91 family, the genes were clustered at one major site, on the chromosome(s) syntenic to human chromosome 19. To identify a putative "founder" gene, > 20 murine KRAB-containing zinc finger protein (ZFP) cDNAs were randomly cloned, but none showed sequence similarity to the ZNF91 genes. These observations suggest that the ZNF91 gene cluster is a derived character specific to Anthropoidea, resulting from a duplication and amplification event some 55 million years ago in the common ancestor of simians. Although the ZNF91 gene cluster is present in all simian species, the sequences of the human ZNF91 gene that confer DNA-binding specificity were conserved only in great apes, suggesting that there is not a high selective pressure to maintain the DNA targets of these proteins during evolution
    corecore