85 research outputs found

    Remarks on the Euler equation

    Get PDF

    Generalized Euler-Poincar\'e equations on Lie groups and homogeneous spaces, orbit invariants and applications

    Full text link
    We develop the necessary tools, including a notion of logarithmic derivative for curves in homogeneous spaces, for deriving a general class of equations including Euler-Poincar\'e equations on Lie groups and homogeneous spaces. Orbit invariants play an important role in this context and we use these invariants to prove global existence and uniqueness results for a class of PDE. This class includes Euler-Poincar\'e equations that have not yet been considered in the literature as well as integrable equations like Camassa-Holm, Degasperis-Procesi, μ\muCH and μ\muDP equations, and the geodesic equations with respect to right invariant Sobolev metrics on the group of diffeomorphisms of the circle

    On a spin conformal invariant on manifolds with boundary

    Get PDF
    On a n-dimensional connected compact manifold with non-empty boundary equipped with a Riemannian metric, a spin structure and a chirality operator, we study some properties of a spin conformal invariant defined from the first eigenvalue of the Dirac operator under the chiral bag boundary condition. More precisely, we show that we can derive a spinorial analogue of Aubin's inequality.Comment: 26 page

    A model problem for conformal parameterizations of the Einstein constraint equations

    Full text link
    We investigate the possibility that the conformal and conformal thin sandwich (CTS) methods can be used to parameterize the set of solutions of the vacuum Einstein constraint equations. To this end we develop a model problem obtained by taking the quotient of certain symmetric data on conformally flat tori. Specializing the model problem to a three-parameter family of conformal data we observe a number of new phenomena for the conformal and CTS methods. Within this family, we obtain a general existence theorem so long as the mean curvature does not change sign. When the mean curvature changes sign, we find that for certain data solutions exist if and only if the transverse-traceless tensor is sufficiently small. When such solutions exist, there are generically more than one. Moreover, the theory for mean curvatures changing sign is shown to be extremely sensitive with respect to the value of a coupling constant in the Einstein constraint equations.Comment: 40 pages, 4 figure

    Bergman Kernel from Path Integral

    Full text link
    We rederive the expansion of the Bergman kernel on Kahler manifolds developed by Tian, Yau, Zelditch, Lu and Catlin, using path integral and perturbation theory, and generalize it to supersymmetric quantum mechanics. One physics interpretation of this result is as an expansion of the projector of wave functions on the lowest Landau level, in the special case that the magnetic field is proportional to the Kahler form. This is relevant for the quantum Hall effect in curved space, and for its higher dimensional generalizations. Other applications include the theory of coherent states, the study of balanced metrics, noncommutative field theory, and a conjecture on metrics in black hole backgrounds. We give a short overview of these various topics. From a conceptual point of view, this expansion is noteworthy as it is a geometric expansion, somewhat similar to the DeWitt-Seeley-Gilkey et al short time expansion for the heat kernel, but in this case describing the long time limit, without depending on supersymmetry.Comment: 27 page

    Blowup Criterion for the Compressible Flows with Vacuum States

    Full text link
    We prove that the maximum norm of the deformation tensor of velocity gradients controls the possible breakdown of smooth(strong) solutions for the 3-dimensional compressible Navier-Stokes equations, which will happen, for example, if the initial density is compactly supported \cite{X1}. More precisely, if a solution of the compressible Navier-Stokes equations is initially regular and loses its regularity at some later time, then the loss of regularity implies the growth without bound of the deformation tensor as the critical time approaches. Our result is the same as Ponce's criterion for 3-dimensional incompressible Euler equations (\cite{po}). Moreover, our method can be generalized to the full Compressible Navier-Stokes system which improve the previous results. In addition, initial vacuum states are allowed in our cases.Comment: 17 page

    Vanishing Viscous Limits for 3D Navier-Stokes Equations with A Navier-Slip Boundary Condition

    Full text link
    In this paper, we investigate the vanishing viscosity limit for solutions to the Navier-Stokes equations with a Navier slip boundary condition on general compact and smooth domains in R3\mathbf{R}^3. We first obtain the higher order regularity estimates for the solutions to Prandtl's equation boundary layers. Furthermore, we prove that the strong solution to Navier-Stokes equations converges to the Eulerian one in C([0,T];H1(Ω))C([0,T];H^1(\Omega)) and L^\infty((0,T)\times\o), where TT is independent of the viscosity, provided that initial velocity is regular enough. Furthermore, rates of convergence are obtained also.Comment: 45page

    The Cauchy problems for Einstein metrics and parallel spinors

    Full text link
    We show that in the analytic category, given a Riemannian metric gg on a hypersurface MZM\subset \Z and a symmetric tensor WW on MM, the metric gg can be locally extended to a Riemannian Einstein metric on ZZ with second fundamental form WW, provided that gg and WW satisfy the constraints on MM imposed by the contracted Codazzi equations. We use this fact to study the Cauchy problem for metrics with parallel spinors in the real analytic category and give an affirmative answer to a question raised in B\"ar, Gauduchon, Moroianu (2005). We also answer negatively the corresponding questions in the smooth category.Comment: 28 pages; final versio

    Riemannian submersions from almost contact metric manifolds

    Full text link
    In this paper we obtain the structure equation of a contact-complex Riemannian submersion and give some applications of this equation in the study of almost cosymplectic manifolds with Kaehler fibres.Comment: Abh. Math. Semin. Univ. Hamb., to appea

    The genes for the inter-α-inhibitor family share a homologous organization in human and mouse

    Full text link
    Inter-α-inhibitor ( IαI ) and related molecules in human are comprised of three evolutionarily related, heavy (H) chains and one light (L) chain, also termed bikunin. The latter originates from a precursor molecule that is cleaved to yield the bikunin and another protein designated α-1-microglobulin (A1m). The four H and L chains are encoded by four distinct genes designated H1, H2, H3 , and L . The L and H2 genes are localized onto human chromosomes (chr) 9 and 10, respectively, whereas the H1 and H3 genes are tandemly arranged on chr 3.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46989/1/335_2004_Article_BF00355432.pd
    corecore